tutorials in python v R
UPDATED:
Here's the BioPython Tutorial and Cookbook --> BioPython
It's made by Jeff Chang and colleagues, and it seems to be a very useful reference for bioinformatics.
Actually, I have now found the Documentation website for Python 2.6 --> Python Docs
It probably has almost all basic functions defined in there. Of course, there's always StackOverflow...
------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------
For future reference, I'm keeping this Python tutorial URL --> Tutorials Point
Obviously I'm new to this. I'm keeping tabs on useful websites for Python learning.
I am not aware yet of a function that easily calls on the documentation from the Python GUI.
This makes my learning very arduous, a "trial-and-error" kind of thing.
#imstillhavingfunatleast
In contrast, R has "?" and "??" functions, which will search the appropriate documentation for that queried function. For example, I can type ?spplot, which will look up the term 'spplot' from the local library, i.e., files in the computer, or ??spplot, which will look up the term from the internet, i.e., from the CRAN website. #obviouslyimafan
If you happen to know how to search for Python functions more easily, do give me a heads up!
Currently, looking for the right function to write is a P.I.A. I'm not complaining though; I thank God that for some reason I'm having fun with this particular challenge.
senate election results
These data are sourced from the 16th Official Canvass Report from the Comelec Rappler Mirror Server. Retrieved May 23, 2013 4:30am. http://bit.ly/12AmEyO
you may also download the high-res dataviz from dropbox --> http://bit.ly/1a9KBPU
The following source code for making the heatmaps is working and functional in R v. 3.0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | #this code was tested in # R version 3.0.0 (2013-04-03) -- "Masked Marvel" # Copyright (C) 2013 The R Foundation for Statistical Computing # Platform: i386-w64-mingw32/i386 (32-bit) getwd() # this is your working directory # setwd("") # you can set your personal working directory here getwd() # ------------------------------------------------------------------------------------------------ # # LOAD VOTES DATASETS from COMELEC's 16th canvass report (OFFICIAL TALLY) # Accessed from http://www.rappler.com/nation/politics/elections-2013/features/rich-media/29126-official-tally-votes-2013-senatorial-race # Retrieved May 23, 2013 4:30am data1 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/namebyregion.csv" download.file(data1, destfile="./datasets/namebyregion.csv") data2 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/namebyprovince.csv" download.file(data2, destfile="./datasets/namebyprovince.csv") data3 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/provincetotalbyname.csv" download.file(data3, destfile="./datasets/provincetotalbyname.csv") data4 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/regiontotalbyname.csv" download.file(data4, destfile="./datasets/regiontotalbyname.csv") list.files(".") dateDownloaded <-date() dateDownloaded byregion <- read.csv("./datasets/namebyregion.csv", header=TRUE) str(byregion) byprovince <- read.csv("./datasets/namebyprovince.csv", header=TRUE) str(byprovince) tprovince <- read.csv("./datasets/provincetotalbyname.csv", header=TRUE) str(tprovince) tregion <- read.csv("./datasets/regiontotalbyname.csv", header=TRUE) str(tregion) # ------------------------------------------------------------------------------------------------ # # LOAD COLOR PALETTES library(RColorBrewer) cols4v1 <- brewer.pal(5, "YlGnBu") pal4v1 <- colorRampPalette(cols4v1) # <- dark blue cyan white gradient cols4v2 <- brewer.pal(5, "YlOrBr") pal4v2 <- colorRampPalette(cols4v2) # <- brown orange white gradient cols4v3 <- brewer.pal(5, "PuRd") pal4v3 <- colorRampPalette(cols4v3) # <- purple pink white gradient cols4v4 <- brewer.pal(5, "RdPu") pal4v4 <- colorRampPalette(cols4v4) # <- violet pink white gradient cols8 <- brewer.pal(8, "Set3") pal8 <- colorRampPalette(cols8) cols12 <- brewer.pal(12, "Set3") pal12 <- colorRampPalette(cols12) # ------------------------------------------------------------------------------------------------ # # DRAW HEATMAPS FOR REGION row.names(byregion) <- byregion$X byregion <- byregion[,2:19] byregion_matrix <- data.matrix(byregion) regions_heatmap1 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = cm.colors(256), scale="column", margins=c(5,10)) # <-- pink, blue regions_heatmap2 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = heat.colors(256), scale="column", margins=c(5,10)) # <-- too much red regions_heatmap3 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v2(5), scale="column", margins=c(5,10)) # <-- yellow brown gradient regions_heatmap4 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient regions_heatmap5 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal12(5), scale="column", margins=c(5,10)) # <- messy looking regions_heatmap6 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v4(5), scale="column", margins=c(5,10)) # <-- purle pink gradient # dev.copy2pdf(file="./output/votesperregion.pdf", height = 8, width = 11) # ------------------------------------------------------------------------------------------------ # # DRAW HEATMAPS PER PROVINCE str(byprovince) names(byprovince) # REGION 1 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region1 provincesregion1 <- byprovince[,33:37] provincesregion1$X <- byprovince$X str(provincesregion1) row.names(provincesregion1) <- provincesregion1$X provincesregion1 <- provincesregion1[,1:5] provincesregion1_matrix <- data.matrix(provincesregion1) #draw heatmap for provinces in region1 region1_heatmap <- heatmap(provincesregion1_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient dev.copy2pdf(file="./output/votesregion1.pdf", height = 8, width = 11) # REGION 2 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region2 provincesregion2 <- byprovince[,38:43] provincesregion2$X <- byprovince$X str(provincesregion2) row.names(provincesregion2) <- provincesregion2$X provincesregion2 <- provincesregion2[,1:6] provincesregion2_matrix <- data.matrix(provincesregion2) #draw heatmap for provinces in region2 region2_heatmap <- heatmap(provincesregion2_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion2.pdf", height = 8, width = 11) # REGION 3 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region3 provincesregion3 <- byprovince[,44:51] provincesregion3$X <- byprovince$X str(provincesregion3) row.names(provincesregion3) <- provincesregion3$X provincesregion3 <- provincesregion3[,1:8] provincesregion3_matrix <- data.matrix(provincesregion3) #draw heatmap for provinces in region3 region3_heatmap <- heatmap(provincesregion3_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion3.pdf", height = 8, width = 11) # REGION 4A ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region4a provincesregion4a <- byprovince[,52:57] provincesregion4a$X <- byprovince$X str(provincesregion4a) row.names(provincesregion4a) <- provincesregion4a$X provincesregion4a <- provincesregion4a[,1:6] provincesregion4a_matrix <- data.matrix(provincesregion4a) #draw heatmap for provinces in region4a region4a_heatmap <- heatmap(provincesregion4a_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion4a.pdf", height = 8, width = 11) # REGION4B ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region4b provincesregion4b <- byprovince[,58:63] provincesregion4b$X <- byprovince$X str(provincesregion4b) row.names(provincesregion4b) <- provincesregion4b$X provincesregion4b <- provincesregion4b[,1:6] provincesregion4b_matrix <- data.matrix(provincesregion4b) #draw heatmap for provinces in region4b region4b_heatmap <- heatmap(provincesregion4b_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion4b.pdf", height = 8, width = 11) # REGION5 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region5 provincesregion5 <- byprovince[,64:70] provincesregion5$X <- byprovince$X str(provincesregion5) row.names(provincesregion5) <- provincesregion5$X provincesregion5 <- provincesregion5[,1:7] provincesregion5_matrix <- data.matrix(provincesregion5) #draw heatmap for provinces in region5 region5_heatmap <- heatmap(provincesregion5_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion5.pdf", height = 8, width = 11) # REGION6 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region6 provincesregion6 <- byprovince[,71:79] provincesregion6$X <- byprovince$X str(provincesregion6) row.names(provincesregion6) <- provincesregion6$X provincesregion6 <- provincesregion6[,1:9] provincesregion6_matrix <- data.matrix(provincesregion6) #draw heatmap for provinces in region6 region6_heatmap <- heatmap(provincesregion6_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion6.pdf", height = 8, width = 11) # REGION7 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region7 provincesregion7 <- byprovince[,80:86] provincesregion7$X <- byprovince$X str(provincesregion7) row.names(provincesregion7) <- provincesregion7$X provincesregion7 <- provincesregion7[,1:7] provincesregion7_matrix <- data.matrix(provincesregion7) #draw heatmap for provinces in region7 region7_heatmap <- heatmap(provincesregion7_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion7.pdf", height = 8, width = 11) # REGION8 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region8 provincesregion8 <- byprovince[,87:93] provincesregion8$X <- byprovince$X str(provincesregion8) row.names(provincesregion8) <- provincesregion8$X provincesregion8 <- provincesregion8[,1:7] provincesregion8_matrix <- data.matrix(provincesregion8) #draw heatmap for provinces in region8 region8_heatmap <- heatmap(provincesregion8_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion8.pdf", height = 8, width = 11) # REGION9 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region9 provincesregion9 <- byprovince[,94:98] provincesregion9$X <- byprovince$X str(provincesregion9) row.names(provincesregion9) <- provincesregion9$X provincesregion9 <- provincesregion9[,1:5] provincesregion9_matrix <- data.matrix(provincesregion9) #draw heatmap for provinces in region9 region9_heatmap <- heatmap(provincesregion9_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion9.pdf", height = 8, width = 11) # REGION10 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region10 provincesregion10 <- byprovince[,99:106] provincesregion10$X <- byprovince$X str(provincesregion10) row.names(provincesregion10) <- provincesregion10$X provincesregion10 <- provincesregion10[,1:7] provincesregion10_matrix <- data.matrix(provincesregion10) #draw heatmap for provinces in region10 region10_heatmap <- heatmap(provincesregion10_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion10.pdf", height = 8, width = 11) # REGION11 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region11 provincesregion11 <- byprovince[,107:112] provincesregion11$X <- byprovince$X str(provincesregion11) row.names(provincesregion11) <- provincesregion11$X provincesregion11 <- provincesregion11[,1:6] provincesregion11_matrix <- data.matrix(provincesregion11) #draw heatmap for provinces in region11 region11_heatmap <- heatmap(provincesregion11_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion11.pdf", height = 8, width = 11) # REGION12 ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region12 provincesregion12 <- byprovince[,113:117] provincesregion12$X <- byprovince$X str(provincesregion12) row.names(provincesregion12) <- provincesregion12$X provincesregion12 <- provincesregion12[,1:5] provincesregion12_matrix <- data.matrix(provincesregion12) #draw heatmap for provinces in region12 region12_heatmap <- heatmap(provincesregion12_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion12.pdf", height = 8, width = 11) # REGION13 CARAGA ------------------------------------------------------------------------------------------------ # for example, we take the provinces in region13 provincesregion13 <- byprovince[,10:15] provincesregion13$X <- byprovince$X str(provincesregion13) row.names(provincesregion13) <- provincesregion13$X provincesregion13 <- provincesregion13[,1:6] provincesregion13_matrix <- data.matrix(provincesregion13) #draw heatmap for provinces in region13 region13_heatmap <- heatmap(provincesregion13_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesregion13.pdf", height = 8, width = 11) # NCR ------------------------------------------------------------------------------------------------ # for example, we take the provinces in ncr provincesncr <- byprovince[,16:32] provincesncr$X <- byprovince$X str(provincesncr) row.names(provincesncr) <- provincesncr$X provincesncr <- provincesncr[,1:17] provincesncr_matrix <- data.matrix(provincesncr) #draw heatmap for provinces in ncr ncr_heatmap <- heatmap(provincesncr_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesncr.pdf", height = 8, width = 11) # CAR ------------------------------------------------------------------------------------------------ # for example, we take the provinces in car provincescar <- byprovince[,2:9] provincescar$X <- byprovince$X str(provincescar) row.names(provincescar) <- provincescar$X provincescar <- provincescar[,1:8] provincescar_matrix <- data.matrix(provincescar) #draw heatmap for provinces in car car_heatmap <- heatmap(provincescar_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votescar.pdf", height = 8, width = 11) # ARMM ------------------------------------------------------------------------------------------------ # for example, we take the provinces in armm provincesarmm <- byprovince[,118:123] provincesarmm$X <- byprovince$X str(provincesarmm) row.names(provincesarmm) <- provincesarmm$X provincesarmm <- provincesarmm[,1:6] provincesarmm_matrix <- data.matrix(provincesarmm) #draw heatmap for provinces in armm armm_heatmap <- heatmap(provincesarmm_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesarmm.pdf", height = 8, width = 11) # OAV OVERSEAS ABSENTEE VOTING COUNTRIES ------------------------------------------------------------------------------------------------ # for example, we take the provinces in oav provincesoav <- byprovince[,124:146] provincesoav$X <- byprovince$X str(provincesoav) row.names(provincesoav) <- provincesoav$X provincesoav <- provincesoav[,1:23] provincesoav_matrix <- data.matrix(provincesoav) #draw heatmap for provinces in oav oav_heatmap <- heatmap(provincesoav_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient # dev.copy2pdf(file="./output/votesoav.pdf", height = 8, width = 11) # # --------------------------- # END OF CODE |
dataviz on antenatal care
in a previous post, i showed you how to make choropleth maps, particularly both world and Philippine maps, using R (see previous post). In this case we used the data we collected from the websites of the World Health Organization and the Philippine Department of Health.
ironman3 v startrek2
this news report was brought to you by xkcd |
- i hate doing reviews; one can argue that films don't need them.
- reviews exist because of movies, not vice versa.
- don't get me wrong; star trek is pretty solid work from the reliable jj abrams.
- it had a tight script, crazy visuals, character buildup, and some bromance on the side.
- that being said, i agonized for 2 hours inside the cinema.
- i was hoping to find salvation for startrek2 after much anticipation.
- i wanted that one break-out moment that can topple iron man 3.
- there was none.
- to be fair, my pre-expectations were quite high for star trek, and a bit low for iron man.
- there was a very high chance that it will fail my expectations.
- as a trekkie, it pains me to say that ironman3 has edged out startrek2 in the emotions department.
- where did my good ol' jj abrams go?
- ironman3 felt, surprisingly, more human.
- you can do the review on your own.
- think about 3 themes:
- infallibility: which felt more vulnerable?
- sense of threat: what was the main goal of the antagonist? was it killing or was it just escaping?
- consequences: do you really think that the protagonist will die?
- having said that, startrek is best seen on 3D and with fellow trekkies.
- live long and prosper, b*tches.
choropleth maps in R
below is the source code for making the choropleths for the infographic about newborns. you can run the following code in R. By the way, I'm using version 3.0.0; some library packages may have a different syntax and output in older versions of R.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | getwd() # this is your working directory on your computer # DOWNLOAD THE FOLLOWING DATA FROM THE INTERNET provinces <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/provinces.csv" download.file(provinces, destfile="./provinces.csv") phattended <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/dataPH2003-2008attended.csv" download.file(phattended, destfile="./dataPH2003-2008attended.csv") phbirthshome <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/dataPH2003-2008facility.csv" download.file(phbirthshome, destfile="./dataPH2003-2008facility.csv") countries <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/datacountries2005-2011attended.csv" download.file(countries, destfile="./datacountries2005-2011attended.csv") # this is a large file from the gadm website, might take a while to finish downloading phil1 <- "http://gadm.org/data/rda/PHL_adm1.RData" download.file(phil1, destfile="./phil1.RData") list.files(".") dateDownloaded <-date() dateDownloaded # ------------------------------------------------------------------------------------------------ # # LOAD GEO MAPS library(sp) con <- "./phil1.RData" print(load(con)) close(con) str(gadm, max.level=2) # phil1.RData has 82 observations of 16 variables names(gadm) # [1] "ID_0" "ISO" "NAME_0" "ID_1" "NAME_1" # [6] "VARNAME_1" "NL_NAME_1" "HASC_1" "CC_1" "TYPE_1" # [11] "ENGTYPE_1" "VALIDFR_1" "VALIDTO_1" "REMARKS_1" "Shape_Leng" # [16] "Shape_Area" # ------------------------------------------------------------------------------------------------ # # LOAD PROVINCES DATASET provinces <- read.csv("./provinces.csv") str(provinces) # ------------------------------------------------------------------------------------------------ # # LOAD DATA BIRTHS ATTENDED BY SKILLED PERSONNEL phattended <- read.csv("./dataPH2003-2008attended.csv", header=TRUE) str(phattended) #calculate percent births with skilled attendants, i.e., doctors, nurses, and midwives only phattended$skilled2008percent <- (phattended$X2008doctorspercent + phattended$X2008nursespercent + phattended$X2008midwivespercent) phattended$skilled2007percent <- (phattended$X2007doctorspercent + phattended$X2007nursespercent + phattended$X2007midwivespercent) phattended$skilled2006percent <- (phattended$X2006doctorspercent + phattended$X2006nursespercent + phattended$X2006midwivespercent) phattended$skilled2005percent <- (phattended$X2005doctorspercent + phattended$X2005nursespercent + phattended$X2005midwivespercent) phattended$skilled2004percent <- (phattended$X2004doctorspercent + phattended$X2004nursespercent + phattended$X2004midwivespercent) phattended$skilled2003percent <- (phattended$X2003doctorspercent + phattended$X2003nursespercent + phattended$X2003midwivespercent) #example: barplot(phattended$X2008midwivespercent, col=unique(phattended$REGION), xlab="", ylab="", cex.axis=0.8) #multiply by 100 phattended$skilled2008percent <- phattended$skilled2008percent*100 phattended$skilled2007percent <- phattended$skilled2007percent*100 phattended$skilled2006percent <- phattended$skilled2006percent*100 phattended$skilled2005percent <- phattended$skilled2005percent*100 phattended$skilled2004percent <- phattended$skilled2004percent*100 phattended$skilled2003percent <- phattended$skilled2003percent*100 # ------------------------------------------------------------------------------------------------ # # LOAD DATA PHL HOMEBIRTHS, NORMAL SPONTANEOUS DELIVERY phbirthshome <- read.csv("./dataPH2003-2008facility.csv", header=TRUE) str(phbirthshome) names(phbirthshome) # ------------------------------------------------------------------------------------------------ # # FIRST MERGE: INNER JOIN FOR DATASETS OF % HOME BIRTHS & % ATTENDED BY SKILLED PERSONNEL phbirthdata <- merge(phattended, phbirthshome, by="REGION") str(phbirthdata) # ------------------------------------------------------------------------------------------------ # # SECOND MERGE: INNER JOIN TO PROVINCE DATASET provattended1 <- merge(provinces, phbirthdata, by="REGION") str(provattended1) # write.csv(provattended1, file="provattended1.csv") # SORT MERGED DATASET TO ARRANGE ACCDG TO GADM MAP's ORDER provattended1.sorted <- provattended1[order(provattended1$PROVINCEORDER) , ] # write.csv(provattended1.sorted, file="provattended1.sorted.csv") # ------------------------------------------------------------------------------------------------------------ # # NOW WE CAN MERGE THE COMBINED DATASET TO THE GADM MAP gadm$region <- as.factor(provattended1.sorted$REGION) gadm$capital <- as.factor(provattended1.sorted$CAPITAL) gadm$popln2010 <- as.numeric(provattended1.sorted$POPLN2010) gadm$landarea <- as.numeric(provattended1.sorted$LANDAREA.km2) gadm$popdense <- as.numeric(provattended1.sorted$POPDENS2010) gadm$livebirths2008 <- as.numeric(provattended1.sorted$X2008total) gadm$skilled2008 <- as.numeric(provattended1.sorted$skilled2008percent) gadm$homebirths2008 <- as.numeric(provattended1.sorted$X2008HOMEpercent) gadm$hospbirths2008 <- as.numeric(provattended1.sorted$X2008HOSPpercent) library(Hmisc) library(RColorBrewer) cols4v1 <- brewer.pal(5, "YlGnBu") pal4v1 <- colorRampPalette(cols4v1) # <- dark blue cyan white gradient cols4v2 <- brewer.pal(5, "YlOrBr") pal4v2 <- colorRampPalette(cols4v2) # <- brown orange white gradient cols4v3 <- brewer.pal(5, "PuRd") pal4v3 <- colorRampPalette(cols4v3) # <- purple pink white gradient cols8 <- brewer.pal(8, "Set3") pal8 <- colorRampPalette(cols8) cols12 <- brewer.pal(12, "Set3") pal12 <- colorRampPalette(cols12) str(gadm$region) str(gadm$capital) str(gadm$popln2010) str(gadm$landarea) str(gadm$popdense) str(gadm$livebirths2008) str(gadm$skilled2008) str(gadm$homebirths2008) # -------------------------------------------------------------------- # PARSE REGIONS INTO LOW-AVERAGE-HIGH gadm$g4area <- cut2(gadm$landarea, g = 4) table(gadm$g4area) gadm$g4popln <- cut2(gadm$popln2010, g = 4) table(gadm$g4popln) gadm$g4popdense <- cut2(gadm$popdense, g = 4) table(gadm$g4popdense) gadm$g4livebirths2008 <-cut2(gadm$livebirths2008, g = 4) table(gadm$g4livebirths2008) gadm$g4skilled2008 <-cut2(gadm$skilled2008, g=4) table(gadm$g4skilled2008) gadm$g4homebirths2008 <- cut2(gadm$homebirths2008, g=4) table(gadm$g4homebirths2008) gadm$g4hospbirths2008 <- cut2(gadm$hospbirths2008, g=4) table(gadm$g4hospbirths2008) gadm$g8popln <- cut2(gadm$popln2010, g = 8) table(gadm$g8popln) gadm$g8popdense <- cut2(gadm$popdense, g = 8) table(gadm$g8popdense) colg4skilled4v1 = pal4v1(length(levels(gadm$g4skilled2008))) spplot(gadm, "g4skilled2008", col.regions=colg4skilled4v1, main="% Births with Skilled Attendants, 2008 by Region") # dev.copy2pdf(file="PH percent births attended 2008.pdf", height =11, width = 8) colg4home4v2 = pal4v2(length(levels(gadm$g4homebirths2008))) spplot(gadm, "g4homebirths2008", col.regions=colg4home4v2, main="% Births at Home, Normal Spontaneous Delivery, 2008 by Region") # dev.copy2pdf(file="PH percent births at home 2008.pdf", height =11, width = 8) colg4hosp4v3 = pal4v3(length(levels(gadm$g4hospbirths2008))) spplot(gadm, "g4hospbirths2008", col.regions=colg4hosp4v3, main="% Births at Hospital, Normal Spontaneous Delivery, 2008 by Region") # dev.copy2pdf(file="PH percent births at hospital 2008.pdf", height =11, width = 8) colpopln4v1 = pal4v1(length(levels(gadm$g4popln))) # <- dark blue cyan white gradient colpopln4v2 = pal4v2(length(levels(gadm$g4popln))) # <- brown orange white gradient colpopln4v3 = pal4v3(length(levels(gadm$g4popln))) # <- purple pink white gradient # spplot(gadm, "g4popln", col.regions=colpopln4v1, main="Population by Province") colregions = pal12(length(levels(gadm$region))) # spplot(gadm, "region", col.regions=colregions, main="Regions in the Philippines") # dev.copy2pdf(file="PH regions.pdf", height =11, width = 8) colpopln8 = pal8(length(levels(gadm$g8popln))) # spplot(gadm, "g8popln", col.regions=colpopln8, main="Population by Province") # dev.copy2pdf(file="PH population per province.pdf", height =11, width = 8) colpopdense8 = pal8(length(levels(gadm$g8popdense))) # spplot(gadm, "g8popdense", col.regions=colpopdense8, main="Population Density by Province") # dev.copy2pdf(file="PH population density per province.pdf", height =11, width = 8) collivebirth4v2 = pal4v2(length(levels(gadm$g4livebirths2008))) # spplot(gadm, "g4livebirths2008", col.regions=collivebirth4v2, main="Live Births 2008") # dev.copy2pdf(file="live births 2008.pdf", height =11, width = 8) # ------------------------------------------------------------------------------------------ # # MAKE WORLD MAP countries <- read.csv("./datacountries2005-2011attended.csv", header=TRUE) str(countries) countries$skilled100 <- countries$birthsattendedpercent*100 countries$g8skilled100 <- cut2(countries$skilled100, g = 8) table(countries$g8skilled100) library(Hmisc) library(RColorBrewer) cols4v1 <- brewer.pal(5, "YlGnBu") pal4v1 <- colorRampPalette(cols4v1) # <- dark blue cyan white gradient cols4v2 <- brewer.pal(5, "YlOrBr") pal4v2 <- colorRampPalette(cols4v2) # <- brown orange white gradient cols4v3 <- brewer.pal(5, "PuRd") pal4v3 <- colorRampPalette(cols4v3) # <- purple pink white gradient cols8 <- brewer.pal(8, "Set3") pal8 <- colorRampPalette(cols8) cols8v2 <- brewer.pal(8, "YlOrRd") pal8v2 <- colorRampPalette(cols8v2) cols8v3 <- brewer.pal(8, "YlGnBu") pal8v3 <- colorRampPalette(cols8v3) cols8v4 <- brewer.pal(8, "RdPu") pal8v4 <- colorRampPalette(cols8v4) cols12 <- brewer.pal(12, "Set3") pal12 <- colorRampPalette(cols12) library(rworldmap) mapattended <- joinCountryData2Map(countries, joinCode = "ISO3", nameJoinColumn = "ISO3V10") str(mapattended, max.level=2) par(mai=c(0,0,0.2,0),xaxs="i",yaxs="i") mapParams <- mapCountryData(mapattended, nameColumnToPlot="skilled100", catMethod = "pretty", numCats = 8, colourPalette = cols8v3, mapTitle="", addLegend=FALSE) do.call( addMapLegend, c(mapParams, legendWidth=0.5, legendMar = 2, legendLabels="all", legendIntervals="data")) # dev.copy2pdf(file="countries births skilled attendants 2005-2011 v2.pdf", height =8, width = 11) |
Subscribe to:
Posts (Atom)