to live in a hospital

this month I started to gain my first experiences with real-life round-the-clock patient care. It's a wonderful mess really. At certain times, you feel jubilant for being able to take care of your patient efficiently, but at other times, you feel stressed that it does not exactly pan out like what you have hoped.

some interns choose to spend their supposed time-off inside the hospital: many of these instances because you want to get things done. i salute them for being extraordinary beyond the call of duty, literally.

anyway, it was just a week long and i have just barely scraped the entire pgh experience, but i felt really tired and fulfilled at the same time. i guess, i have to end this blogpost now, because postduty people would wisely use their time off sleeping rather than writing another word in a blog.

tutorials in python v R



UPDATED:
Here's the BioPython Tutorial and Cookbook --> BioPython
It's made by Jeff Chang and colleagues, and it seems to be a very useful reference for bioinformatics.

Actually, I have now found the Documentation website for Python 2.6 --> Python Docs
It probably has almost all basic functions defined in there. Of course, there's always StackOverflow...

------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------

For future reference, I'm keeping this Python tutorial URL --> Tutorials Point

Obviously I'm new to this. I'm keeping tabs on useful websites for Python learning.
I am not aware yet of a function that easily calls on the documentation from the Python GUI.
This makes my learning very arduous, a "trial-and-error" kind of thing.
#imstillhavingfunatleast



In contrast, R has "?" and "??" functions, which will search the appropriate documentation for that queried function. For example, I can type ?spplot, which will look up the term 'spplot' from the local library, i.e., files in the computer, or ??spplot, which will look up the term from the internet, i.e., from the CRAN website. #obviouslyimafan

If you happen to know how to search for Python functions more easily, do give me a heads up!
Currently, looking for the right function to write is a P.I.A. I'm not complaining though; I thank God that for some reason I'm having fun with this particular challenge.


senate election results










These data are sourced from the 16th Official Canvass Report from the Comelec Rappler Mirror Server. Retrieved May 23, 2013 4:30am. http://bit.ly/12AmEyO

you may also download the high-res dataviz from dropbox --> http://bit.ly/1a9KBPU


The following source code for making the heatmaps is working and functional in R v. 3.0.0



  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#this code was tested in
# R version 3.0.0 (2013-04-03) -- "Masked Marvel"
# Copyright (C) 2013 The R Foundation for Statistical Computing
# Platform: i386-w64-mingw32/i386 (32-bit)

getwd()
# this is your working directory

# setwd("")
# you can set your personal working directory here

getwd()

#  ------------------------------------------------------------------------------------------------
# # LOAD VOTES DATASETS from COMELEC's 16th canvass report (OFFICIAL TALLY)
# Accessed from http://www.rappler.com/nation/politics/elections-2013/features/rich-media/29126-official-tally-votes-2013-senatorial-race
# Retrieved May 23, 2013 4:30am


data1 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/namebyregion.csv"
download.file(data1, destfile="./datasets/namebyregion.csv")

data2 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/namebyprovince.csv"
download.file(data2, destfile="./datasets/namebyprovince.csv")

data3 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/provincetotalbyname.csv"
download.file(data3, destfile="./datasets/provincetotalbyname.csv")

data4 <- "http://dl.dropboxusercontent.com/u/7911075/election%202013%20csv/regiontotalbyname.csv"
download.file(data4, destfile="./datasets/regiontotalbyname.csv")

list.files(".")
dateDownloaded <-date()
dateDownloaded

byregion <- read.csv("./datasets/namebyregion.csv", header=TRUE)
str(byregion)

byprovince <- read.csv("./datasets/namebyprovince.csv", header=TRUE)
str(byprovince)

tprovince <- read.csv("./datasets/provincetotalbyname.csv", header=TRUE)
str(tprovince)

tregion <- read.csv("./datasets/regiontotalbyname.csv", header=TRUE)
str(tregion)

#  ------------------------------------------------------------------------------------------------
# # LOAD COLOR PALETTES

library(RColorBrewer)

cols4v1 <- brewer.pal(5, "YlGnBu")
pal4v1 <- colorRampPalette(cols4v1)  # <- dark blue cyan white gradient

cols4v2 <- brewer.pal(5, "YlOrBr")
pal4v2 <- colorRampPalette(cols4v2)  # <- brown orange white gradient

cols4v3 <- brewer.pal(5, "PuRd")
pal4v3 <- colorRampPalette(cols4v3)  # <- purple pink white gradient

cols4v4 <- brewer.pal(5, "RdPu")
pal4v4 <- colorRampPalette(cols4v4)  # <- violet pink white gradient

cols8 <- brewer.pal(8, "Set3")
pal8 <- colorRampPalette(cols8)

cols12 <- brewer.pal(12, "Set3")
pal12 <- colorRampPalette(cols12)

#  ------------------------------------------------------------------------------------------------
# # DRAW HEATMAPS FOR REGION

row.names(byregion) <- byregion$X
byregion <- byregion[,2:19]
byregion_matrix <- data.matrix(byregion)

regions_heatmap1 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = cm.colors(256), scale="column", margins=c(5,10)) # <-- pink, blue
regions_heatmap2 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = heat.colors(256), scale="column", margins=c(5,10)) # <-- too much red
regions_heatmap3 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v2(5), scale="column", margins=c(5,10)) # <-- yellow brown gradient
regions_heatmap4 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
regions_heatmap5 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal12(5), scale="column", margins=c(5,10)) # <- messy looking

regions_heatmap6 <- heatmap(byregion_matrix, Rowv=NA, Colv=NA, col = pal4v4(5), scale="column", margins=c(5,10)) # <-- purle pink gradient
# dev.copy2pdf(file="./output/votesperregion.pdf", height = 8, width = 11)

#  ------------------------------------------------------------------------------------------------
# # DRAW HEATMAPS PER PROVINCE

str(byprovince)
names(byprovince)

#  REGION 1 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region1
provincesregion1 <- byprovince[,33:37]
provincesregion1$X <- byprovince$X
str(provincesregion1)
row.names(provincesregion1) <- provincesregion1$X
provincesregion1 <- provincesregion1[,1:5]
provincesregion1_matrix <- data.matrix(provincesregion1)

#draw heatmap for provinces in region1
region1_heatmap <- heatmap(provincesregion1_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
dev.copy2pdf(file="./output/votesregion1.pdf", height = 8, width = 11)

#  REGION 2 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region2
provincesregion2 <- byprovince[,38:43]
provincesregion2$X <- byprovince$X
str(provincesregion2)
row.names(provincesregion2) <- provincesregion2$X
provincesregion2 <- provincesregion2[,1:6]
provincesregion2_matrix <- data.matrix(provincesregion2)

#draw heatmap for provinces in region2
region2_heatmap <- heatmap(provincesregion2_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion2.pdf", height = 8, width = 11)

#  REGION 3 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region3
provincesregion3 <- byprovince[,44:51]
provincesregion3$X <- byprovince$X
str(provincesregion3)
row.names(provincesregion3) <- provincesregion3$X
provincesregion3 <- provincesregion3[,1:8]
provincesregion3_matrix <- data.matrix(provincesregion3)

#draw heatmap for provinces in region3
region3_heatmap <- heatmap(provincesregion3_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion3.pdf", height = 8, width = 11)

#  REGION 4A ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region4a
provincesregion4a <- byprovince[,52:57]
provincesregion4a$X <- byprovince$X
str(provincesregion4a)
row.names(provincesregion4a) <- provincesregion4a$X

provincesregion4a <- provincesregion4a[,1:6]
provincesregion4a_matrix <- data.matrix(provincesregion4a)

#draw heatmap for provinces in region4a
region4a_heatmap <- heatmap(provincesregion4a_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion4a.pdf", height = 8, width = 11)

#  REGION4B ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region4b
provincesregion4b <- byprovince[,58:63]
provincesregion4b$X <- byprovince$X
str(provincesregion4b)
row.names(provincesregion4b) <- provincesregion4b$X

provincesregion4b <- provincesregion4b[,1:6]
provincesregion4b_matrix <- data.matrix(provincesregion4b)

#draw heatmap for provinces in region4b
region4b_heatmap <- heatmap(provincesregion4b_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion4b.pdf", height = 8, width = 11)

#  REGION5 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region5
provincesregion5 <- byprovince[,64:70]
provincesregion5$X <- byprovince$X
str(provincesregion5)
row.names(provincesregion5) <- provincesregion5$X

provincesregion5 <- provincesregion5[,1:7]
provincesregion5_matrix <- data.matrix(provincesregion5)

#draw heatmap for provinces in region5
region5_heatmap <- heatmap(provincesregion5_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion5.pdf", height = 8, width = 11)

#  REGION6 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region6
provincesregion6 <- byprovince[,71:79]
provincesregion6$X <- byprovince$X
str(provincesregion6)
row.names(provincesregion6) <- provincesregion6$X

provincesregion6 <- provincesregion6[,1:9]
provincesregion6_matrix <- data.matrix(provincesregion6)

#draw heatmap for provinces in region6
region6_heatmap <- heatmap(provincesregion6_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion6.pdf", height = 8, width = 11)

#  REGION7 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region7
provincesregion7 <- byprovince[,80:86]
provincesregion7$X <- byprovince$X
str(provincesregion7)
row.names(provincesregion7) <- provincesregion7$X

provincesregion7 <- provincesregion7[,1:7]
provincesregion7_matrix <- data.matrix(provincesregion7)

#draw heatmap for provinces in region7
region7_heatmap <- heatmap(provincesregion7_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion7.pdf", height = 8, width = 11)

#  REGION8 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region8
provincesregion8 <- byprovince[,87:93]
provincesregion8$X <- byprovince$X
str(provincesregion8)
row.names(provincesregion8) <- provincesregion8$X

provincesregion8 <- provincesregion8[,1:7]
provincesregion8_matrix <- data.matrix(provincesregion8)

#draw heatmap for provinces in region8
region8_heatmap <- heatmap(provincesregion8_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion8.pdf", height = 8, width = 11)

#  REGION9 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region9
provincesregion9 <- byprovince[,94:98]
provincesregion9$X <- byprovince$X
str(provincesregion9)
row.names(provincesregion9) <- provincesregion9$X

provincesregion9 <- provincesregion9[,1:5]
provincesregion9_matrix <- data.matrix(provincesregion9)

#draw heatmap for provinces in region9
region9_heatmap <- heatmap(provincesregion9_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion9.pdf", height = 8, width = 11)

#  REGION10 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region10
provincesregion10 <- byprovince[,99:106]
provincesregion10$X <- byprovince$X
str(provincesregion10)
row.names(provincesregion10) <- provincesregion10$X

provincesregion10 <- provincesregion10[,1:7]
provincesregion10_matrix <- data.matrix(provincesregion10)

#draw heatmap for provinces in region10
region10_heatmap <- heatmap(provincesregion10_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion10.pdf", height = 8, width = 11)

#  REGION11 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region11
provincesregion11 <- byprovince[,107:112]
provincesregion11$X <- byprovince$X
str(provincesregion11)
row.names(provincesregion11) <- provincesregion11$X

provincesregion11 <- provincesregion11[,1:6]
provincesregion11_matrix <- data.matrix(provincesregion11)

#draw heatmap for provinces in region11
region11_heatmap <- heatmap(provincesregion11_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion11.pdf", height = 8, width = 11)

#  REGION12 ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region12
provincesregion12 <- byprovince[,113:117]
provincesregion12$X <- byprovince$X
str(provincesregion12)
row.names(provincesregion12) <- provincesregion12$X

provincesregion12 <- provincesregion12[,1:5]
provincesregion12_matrix <- data.matrix(provincesregion12)

#draw heatmap for provinces in region12
region12_heatmap <- heatmap(provincesregion12_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion12.pdf", height = 8, width = 11)

#  REGION13 CARAGA ------------------------------------------------------------------------------------------------
# for example, we take the provinces in region13
provincesregion13 <- byprovince[,10:15]
provincesregion13$X <- byprovince$X
str(provincesregion13)
row.names(provincesregion13) <- provincesregion13$X

provincesregion13 <- provincesregion13[,1:6]
provincesregion13_matrix <- data.matrix(provincesregion13)

#draw heatmap for provinces in region13
region13_heatmap <- heatmap(provincesregion13_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesregion13.pdf", height = 8, width = 11)

#  NCR  ------------------------------------------------------------------------------------------------
# for example, we take the provinces in ncr
provincesncr <- byprovince[,16:32]
provincesncr$X <- byprovince$X
str(provincesncr)
row.names(provincesncr) <- provincesncr$X

provincesncr <- provincesncr[,1:17]
provincesncr_matrix <- data.matrix(provincesncr)

#draw heatmap for provinces in ncr
ncr_heatmap <- heatmap(provincesncr_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesncr.pdf", height = 8, width = 11)

#  CAR  ------------------------------------------------------------------------------------------------
# for example, we take the provinces in car
provincescar <- byprovince[,2:9]
provincescar$X <- byprovince$X
str(provincescar)
row.names(provincescar) <- provincescar$X

provincescar <- provincescar[,1:8]
provincescar_matrix <- data.matrix(provincescar)

#draw heatmap for provinces in car
car_heatmap <- heatmap(provincescar_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votescar.pdf", height = 8, width = 11)

#  ARMM  ------------------------------------------------------------------------------------------------
# for example, we take the provinces in armm
provincesarmm <- byprovince[,118:123]
provincesarmm$X <- byprovince$X
str(provincesarmm)

row.names(provincesarmm) <- provincesarmm$X
provincesarmm <- provincesarmm[,1:6]
provincesarmm_matrix <- data.matrix(provincesarmm)

#draw heatmap for provinces in armm
armm_heatmap <- heatmap(provincesarmm_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesarmm.pdf", height = 8, width = 11)

#  OAV OVERSEAS ABSENTEE VOTING COUNTRIES  ------------------------------------------------------------------------------------------------
# for example, we take the provinces in oav
provincesoav <- byprovince[,124:146]
provincesoav$X <- byprovince$X
str(provincesoav)

row.names(provincesoav) <- provincesoav$X
provincesoav <- provincesoav[,1:23]
provincesoav_matrix <- data.matrix(provincesoav)

#draw heatmap for provinces in oav
oav_heatmap <- heatmap(provincesoav_matrix, Rowv=NA, Colv=NA, col = pal4v1(5), scale="column", margins=c(5,10)) # <-- yellow blue gradient
# dev.copy2pdf(file="./output/votesoav.pdf", height = 8, width = 11)


# # ---------------------------
# END OF CODE

dataviz on antenatal care

in a previous post, i showed you how to make choropleth maps, particularly both world and Philippine maps, using R (see previous post). In this case we used the data we collected from the websites of the World Health Organization and the Philippine Department of Health.

improving antenatal care

infographic newborn screening

ironman3 v startrek2

this news report was brought to you by xkcd

  • i hate doing reviews; one can argue that films don't need them.
  • reviews exist because of movies, not vice versa.

  • don't get me wrong; star trek is pretty solid work from the reliable jj abrams.
  • it had a tight script, crazy visuals, character buildup, and some bromance on the side.

  • that being said, i agonized for 2 hours inside the cinema.
  • i was hoping to find salvation for startrek2 after much anticipation.
  • i wanted that one break-out moment that can topple iron man 3.
  • there was none.
  • to be fair, my pre-expectations were quite high for star trek, and a bit low for iron man.
  • there was a very high chance that it will fail my expectations.

  • as a trekkie, it pains me to say that ironman3 has edged out startrek2 in the emotions department.
  • where did my good ol' jj abrams go?
  • ironman3 felt, surprisingly, more human.

  • you can do the review on your own.
  • think about 3 themes:
  • infallibility: which felt more vulnerable?
  • sense of threat: what was the main goal of the antagonist? was it killing or was it just escaping?
  • consequences: do you really think that the protagonist will die?

  • having said that, startrek is best seen on 3D and with fellow trekkies.
  • live long and prosper, b*tches.

choropleth maps in R

below is the source code for making the choropleths for the infographic about newborns. you can run the following code in R. By the way, I'm using version 3.0.0; some library packages may have a different syntax and output in older versions of R.


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
getwd()
# this is your working directory on your computer

# DOWNLOAD THE FOLLOWING DATA FROM THE INTERNET
provinces <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/provinces.csv"
download.file(provinces, destfile="./provinces.csv")

phattended <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/dataPH2003-2008attended.csv"
download.file(phattended, destfile="./dataPH2003-2008attended.csv")

phbirthshome <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/dataPH2003-2008facility.csv"
download.file(phbirthshome, destfile="./dataPH2003-2008facility.csv")

countries <- "http://dl.dropboxusercontent.com/u/7911075/csv%20newborn/datacountries2005-2011attended.csv"
download.file(countries, destfile="./datacountries2005-2011attended.csv")

# this is a large file from the gadm website, might take a while to finish downloading
phil1 <- "http://gadm.org/data/rda/PHL_adm1.RData"
download.file(phil1, destfile="./phil1.RData")

list.files(".")
dateDownloaded <-date()
dateDownloaded

#  ------------------------------------------------------------------------------------------------
# # LOAD GEO MAPS

library(sp)

con <- "./phil1.RData"
print(load(con))
close(con)
str(gadm, max.level=2)
# phil1.RData has 82 observations of 16 variables

names(gadm)
#  [1] "ID_0"       "ISO"        "NAME_0"     "ID_1"       "NAME_1"    
# [6] "VARNAME_1"  "NL_NAME_1"  "HASC_1"     "CC_1"       "TYPE_1"    
# [11] "ENGTYPE_1"  "VALIDFR_1"  "VALIDTO_1"  "REMARKS_1"  "Shape_Leng"
# [16] "Shape_Area"

#  ------------------------------------------------------------------------------------------------
# # LOAD PROVINCES DATASET
provinces <- read.csv("./provinces.csv")
str(provinces)

#  ------------------------------------------------------------------------------------------------
# # LOAD DATA BIRTHS ATTENDED BY SKILLED PERSONNEL
phattended <- read.csv("./dataPH2003-2008attended.csv", header=TRUE)
str(phattended)

#calculate percent births with skilled attendants, i.e., doctors, nurses, and midwives only
phattended$skilled2008percent <- (phattended$X2008doctorspercent + phattended$X2008nursespercent + phattended$X2008midwivespercent)
phattended$skilled2007percent <- (phattended$X2007doctorspercent + phattended$X2007nursespercent + phattended$X2007midwivespercent)
phattended$skilled2006percent <- (phattended$X2006doctorspercent + phattended$X2006nursespercent + phattended$X2006midwivespercent)
phattended$skilled2005percent <- (phattended$X2005doctorspercent + phattended$X2005nursespercent + phattended$X2005midwivespercent)
phattended$skilled2004percent <- (phattended$X2004doctorspercent + phattended$X2004nursespercent + phattended$X2004midwivespercent)
phattended$skilled2003percent <- (phattended$X2003doctorspercent + phattended$X2003nursespercent + phattended$X2003midwivespercent)
#example: barplot(phattended$X2008midwivespercent, col=unique(phattended$REGION), xlab="", ylab="", cex.axis=0.8)

#multiply by 100
phattended$skilled2008percent <- phattended$skilled2008percent*100
phattended$skilled2007percent <- phattended$skilled2007percent*100
phattended$skilled2006percent <- phattended$skilled2006percent*100
phattended$skilled2005percent <- phattended$skilled2005percent*100
phattended$skilled2004percent <- phattended$skilled2004percent*100
phattended$skilled2003percent <- phattended$skilled2003percent*100

#  ------------------------------------------------------------------------------------------------
# # LOAD DATA PHL HOMEBIRTHS, NORMAL SPONTANEOUS DELIVERY
phbirthshome <- read.csv("./dataPH2003-2008facility.csv", header=TRUE)
str(phbirthshome)
names(phbirthshome)

#  ------------------------------------------------------------------------------------------------
# # FIRST MERGE: INNER JOIN FOR DATASETS OF % HOME BIRTHS & % ATTENDED BY SKILLED PERSONNEL
phbirthdata <- merge(phattended, phbirthshome, by="REGION")
str(phbirthdata)
 
#  ------------------------------------------------------------------------------------------------
# # SECOND MERGE: INNER JOIN TO PROVINCE DATASET
provattended1 <- merge(provinces, phbirthdata, by="REGION")
str(provattended1)
# write.csv(provattended1, file="provattended1.csv")

# SORT MERGED DATASET TO ARRANGE ACCDG TO GADM MAP's ORDER
provattended1.sorted <- provattended1[order(provattended1$PROVINCEORDER) , ]
# write.csv(provattended1.sorted, file="provattended1.sorted.csv")

# ------------------------------------------------------------------------------------------------------------
# # NOW WE CAN MERGE THE COMBINED DATASET TO THE GADM MAP

gadm$region <- as.factor(provattended1.sorted$REGION)
gadm$capital <- as.factor(provattended1.sorted$CAPITAL)
gadm$popln2010 <- as.numeric(provattended1.sorted$POPLN2010)
gadm$landarea <- as.numeric(provattended1.sorted$LANDAREA.km2)
gadm$popdense <- as.numeric(provattended1.sorted$POPDENS2010)
gadm$livebirths2008 <- as.numeric(provattended1.sorted$X2008total)
gadm$skilled2008 <- as.numeric(provattended1.sorted$skilled2008percent)
gadm$homebirths2008 <- as.numeric(provattended1.sorted$X2008HOMEpercent)
gadm$hospbirths2008 <- as.numeric(provattended1.sorted$X2008HOSPpercent)

library(Hmisc)
library(RColorBrewer)

cols4v1 <- brewer.pal(5, "YlGnBu")
pal4v1 <- colorRampPalette(cols4v1)  # <- dark blue cyan white gradient

cols4v2 <- brewer.pal(5, "YlOrBr")
pal4v2 <- colorRampPalette(cols4v2)  # <- brown orange white gradient

cols4v3 <- brewer.pal(5, "PuRd")
pal4v3 <- colorRampPalette(cols4v3)  # <- purple pink white gradient

cols8 <- brewer.pal(8, "Set3")
pal8 <- colorRampPalette(cols8)

cols12 <- brewer.pal(12, "Set3")
pal12 <- colorRampPalette(cols12)

str(gadm$region)
str(gadm$capital)
str(gadm$popln2010)
str(gadm$landarea)
str(gadm$popdense)
str(gadm$livebirths2008)
str(gadm$skilled2008)
str(gadm$homebirths2008)

# --------------------------------------------------------------------
#  PARSE REGIONS INTO LOW-AVERAGE-HIGH

gadm$g4area <- cut2(gadm$landarea, g = 4)
table(gadm$g4area)

gadm$g4popln <- cut2(gadm$popln2010, g = 4)
table(gadm$g4popln)

gadm$g4popdense <- cut2(gadm$popdense, g = 4)
table(gadm$g4popdense)

gadm$g4livebirths2008 <-cut2(gadm$livebirths2008, g = 4)
table(gadm$g4livebirths2008)

gadm$g4skilled2008 <-cut2(gadm$skilled2008, g=4)
table(gadm$g4skilled2008)

gadm$g4homebirths2008 <- cut2(gadm$homebirths2008, g=4)
table(gadm$g4homebirths2008)

gadm$g4hospbirths2008 <- cut2(gadm$hospbirths2008, g=4)
table(gadm$g4hospbirths2008)

gadm$g8popln <- cut2(gadm$popln2010, g = 8)
table(gadm$g8popln)

gadm$g8popdense <- cut2(gadm$popdense, g = 8)
table(gadm$g8popdense)

colg4skilled4v1 = pal4v1(length(levels(gadm$g4skilled2008)))
spplot(gadm, "g4skilled2008", col.regions=colg4skilled4v1, main="% Births with Skilled Attendants, 2008 by Region")
# dev.copy2pdf(file="PH percent births attended 2008.pdf", height =11, width = 8)

colg4home4v2 = pal4v2(length(levels(gadm$g4homebirths2008)))
spplot(gadm, "g4homebirths2008", col.regions=colg4home4v2, main="% Births at Home, Normal Spontaneous Delivery, 2008 by Region")
# dev.copy2pdf(file="PH percent births at home 2008.pdf", height =11, width = 8)

colg4hosp4v3 = pal4v3(length(levels(gadm$g4hospbirths2008)))
spplot(gadm, "g4hospbirths2008", col.regions=colg4hosp4v3, main="% Births at Hospital, Normal Spontaneous Delivery, 2008 by Region")
# dev.copy2pdf(file="PH percent births at hospital 2008.pdf", height =11, width = 8)

colpopln4v1 = pal4v1(length(levels(gadm$g4popln))) # <- dark blue cyan white gradient
colpopln4v2 = pal4v2(length(levels(gadm$g4popln))) # <- brown orange white gradient 
colpopln4v3 = pal4v3(length(levels(gadm$g4popln))) # <- purple pink white gradient
# spplot(gadm, "g4popln", col.regions=colpopln4v1, main="Population by Province")

colregions = pal12(length(levels(gadm$region)))
# spplot(gadm, "region", col.regions=colregions, main="Regions in the Philippines")
# dev.copy2pdf(file="PH regions.pdf", height =11, width = 8)

colpopln8 = pal8(length(levels(gadm$g8popln)))
# spplot(gadm, "g8popln", col.regions=colpopln8, main="Population by Province")
# dev.copy2pdf(file="PH population per province.pdf", height =11, width = 8)

colpopdense8 = pal8(length(levels(gadm$g8popdense)))
# spplot(gadm, "g8popdense", col.regions=colpopdense8, main="Population Density by Province")
# dev.copy2pdf(file="PH population density per province.pdf", height =11, width = 8)

collivebirth4v2 = pal4v2(length(levels(gadm$g4livebirths2008)))
# spplot(gadm, "g4livebirths2008", col.regions=collivebirth4v2, main="Live Births 2008")
# dev.copy2pdf(file="live births 2008.pdf", height =11, width = 8)

# ------------------------------------------------------------------------------------------
# # MAKE WORLD MAP

countries <- read.csv("./datacountries2005-2011attended.csv", header=TRUE)
str(countries)
countries$skilled100 <- countries$birthsattendedpercent*100
countries$g8skilled100 <- cut2(countries$skilled100, g = 8)
table(countries$g8skilled100)


library(Hmisc)
library(RColorBrewer)

cols4v1 <- brewer.pal(5, "YlGnBu")
pal4v1 <- colorRampPalette(cols4v1)  # <- dark blue cyan white gradient

cols4v2 <- brewer.pal(5, "YlOrBr")
pal4v2 <- colorRampPalette(cols4v2)  # <- brown orange white gradient

cols4v3 <- brewer.pal(5, "PuRd")
pal4v3 <- colorRampPalette(cols4v3)  # <- purple pink white gradient

cols8 <- brewer.pal(8, "Set3")
pal8 <- colorRampPalette(cols8)

cols8v2 <- brewer.pal(8, "YlOrRd")
pal8v2 <- colorRampPalette(cols8v2)

cols8v3 <- brewer.pal(8, "YlGnBu")
pal8v3 <- colorRampPalette(cols8v3)

cols8v4 <- brewer.pal(8, "RdPu")
pal8v4 <- colorRampPalette(cols8v4)

cols12 <- brewer.pal(12, "Set3")
pal12 <- colorRampPalette(cols12)

library(rworldmap)

mapattended <- joinCountryData2Map(countries, joinCode = "ISO3", nameJoinColumn = "ISO3V10")
str(mapattended, max.level=2)

par(mai=c(0,0,0.2,0),xaxs="i",yaxs="i")
mapParams <- mapCountryData(mapattended, nameColumnToPlot="skilled100", catMethod = "pretty", numCats = 8, colourPalette = cols8v3, mapTitle="", addLegend=FALSE)
do.call( addMapLegend, c(mapParams, legendWidth=0.5, legendMar = 2, legendLabels="all", legendIntervals="data"))
# dev.copy2pdf(file="countries births skilled attendants 2005-2011 v2.pdf", height =8, width = 11)

my osce recipe

i practiced suturing and vaccination using pork sisig!

sterile water vaccine station

sinulid at karayom suturing station
t'was the most fun review session i ever had.

masked marvel is out

R version 3.0.0, codename masked marvel, is now ready for download! (link)  See the newest iteration of the open-source community's beloved environment for statistics computing and graphics. (homepage) The stable version was officially released on April 3, 2013.


I've been waiting for this for the past few months. I've been number-crunching during January to March using version2.15, and I was hesitant to download v2.16, because I knew for a fact that v3.0 is due for release this year. I had difficulty using certain packages, such as randomForest, because they won't work on v2.15.

So here now my patience has paid off, and such a great timing this was: school year's almost over, and I can install the software and upgrade packages to my heart's content. I have all the time that I need.

Professor Peter Dalgaard of the Copenhagen Business School precisely wrote, in behalf of the R core team, in his letter to the community mailing list saying that R v3.0.0 is not so much about adding a lot of new features from v2.0 iterations, but rather it was decided that the codebase has "developed to a new level of maturity" that warrants a major release.


Version 3.0.0, as of this writing, contains only really major new feature: The inclusion of long vectors... More changes are likely to make it into the final release, but the main reason for having it as a new major release is that R over the last 8.5 years has reached a new level: we now have 64 bit support on all platforms, support for parallel processing, the Matrix package, and much more.
 Thank you R core team! Happy data crunching.

R code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
getwd()

# setwd("C:/Users/aseandi/My Library/COURSERA/Passion-Driven Statistics/datasets")

getwd()

# fileurlcsv <- "http://spark-public.s3.amazonaws.com/pdstatistics/data_sets/nesarc_pds.csv"
# download.file(fileurlcsv, destfile="./nesarc_pds.csv")
# list.files(".")
# dateDownloaded <-date()
# dateDownloaded

nesarc <- read.csv("./nesarc_pds.csv")
str(nesarc)
# summary(nesarc)
# sapply(nesarc[1, ], class)
# sum(is.na(nesarc))
# table(is.na(nesarc))

library(Hmisc)
library(RColorBrewer)

library(reshape2)
library(stringr)
library(plyr)

# # --------------------------------------------------------------------------------------------------------
# # # DEFINING THE VARIABLES UNDER STUDY # # #

# study variables: Sex, average daily quantity of alcohol consumed and cigarettes smoked in past 12 months, and use of sedatives, tranquilizers, cannabis, opioids, amphetamines, cocaine, heroine, hallucinogens, and inhalants
# codes: Sex, s2aq8b, s3aq3c1, S3bq1a1, S3bq1a2, S3bq1a3, S3bq1a4, S3bq1a5, S3bq1a6, S3bq1a7, S3bq1a8, S3bq1a9a

#number of alcohol consumed in past 12 months
table(is.na(nesarc$S2AQ8B))
table(nesarc$S2AQ8B)
sum(table(nesarc$S2AQ8B))

#usual quantity of cigarettes smoked
table(is.na(nesarc$S3AQ3C1))
table(nesarc$S3AQ3C1)
sum(table(nesarc$S3AQ3C1))

# # --------------------------------------------------------------------------------------------------------

# without DATA MUNGING, it becomes weird, since binomials are coded differently [as 1 or 2], and NAs were assigned a numeric value [9]
# here we are also only using LINEAR REGRESSION modeling, not accounting for the binomial distribution of some of these variables
lmNoAdjust <- lm(MAJORDEPLIFE ~ SEX+ S2AQ8B+ S3AQ3C1+ S3BQ1A1+ S3BQ1A2+ S3BQ1A3+ S3BQ1A4+ S3BQ1A5+ S3BQ1A6+ S3BQ1A7+ S3BQ1A8+ S3BQ1A9A, data=nesarc)
summary(lmNoAdjust)

# Coefficients:
#              Estimate Std. Error t value Pr(>|t|)    
# (Intercept)  0.0347409  0.0223817   1.552 0.120639    
# SEX          0.1533657  0.0072438  21.172  < 2e-16 ***
# S2AQ8B       0.0001574  0.0003837   0.410 0.681605    
# S3AQ3C1      0.0010271  0.0002495   4.117 3.86e-05 ***
# S3BQ1A1     -0.0788230  0.0155627  -5.065 4.14e-07 ***
# S3BQ1A2     -0.0113460  0.0163401  -0.694 0.487463    
# S3BQ1A3     -0.0418769  0.0148434  -2.821 0.004791 ** 
# S3BQ1A4     -0.0030821  0.0137318  -0.224 0.822409    
# S3BQ1A5     -0.0815162  0.0080903 -10.076  < 2e-16 ***
# S3BQ1A6     -0.0115252  0.0133963  -0.860 0.389627    
# S3BQ1A7     -0.0105396  0.0134567  -0.783 0.433512    
# S3BQ1A8      0.0517945  0.0150253   3.447 0.000568 ***
# S3BQ1A9A     0.1440555  0.0179928   8.006 1.28e-15 ***

# # --------------------------------------------------------------------------------------------------------
# # # CREATE NEW DATAFRAME WITH FEWER VARIABLES # # #
mddold <- data.frame(nesarc$MAJORDEPLIFE, nesarc$SEX, 
nesarc$S3AQ3B1, nesarc$S3AQ3C1, nesarc$S2AQ8A, nesarc$S2AQ8B, 
nesarc$S3BQ1A1, nesarc$S3BQ1A2, nesarc$S3BQ1A3, nesarc$S3BQ1A4, nesarc$S3BQ1A5, nesarc$S3BQ1A6, nesarc$S3BQ1A7, nesarc$S3BQ1A8, nesarc$S3BQ1A9A)
str(mddold)
names(mddold) <- c("mdd", "sex", 
"smokefreq", "smoke", "drinkfreq", "alcohol", 
"sedatives", "tranquilizers", "opioids", "amphetamines", "cannabis", "cocaine", "hallucinogens", "inhalants", "heroine")
str(mddold)

# # --------------------------------------------------------------------------------------------------------
# # # DATA MUNGING # # #
# for the  following variables: "sex", "sedatives", "tranquilizers", "cannabis", "opioids", "amphetamines", "cocaine", "heroine", "hallucinogens", "inhalants"
	# change the binomial setting [1,2] --> [1,0]
	# change [9] to [NA]

# # # DATA MUNGING # # #
# for the  following variables: "alcohol", "smoke", "smokefreq", "drinkfreq"
	# change [99] for smoke quantity, drinks consumed to [NA]
	# change [99] for drinkfreq to [NA]
	# change [9] for smokefreq to [NA]

mddold$sex[mddold$sex==2]=0 # sex=0 female; sex=1 male

mddold$sedatives[mddold$sedatives==2]=0
mddold$tranquilizers[mddold$tranquilizers==2]=0
mddold$cannabis[mddold$cannabis==2]=0
mddold$opioids[mddold$opioids==2]=0
mddold$amphetamines[mddold$amphetamines==2]=0
mddold$cocaine[mddold$cocaine==2]=0
mddold$heroine[mddold$heroine==2]=0
mddold$hallucinogens[mddold$hallucinogens==2]=0
mddold$inhalants[mddold$inhalants==2]=0

mddold$sedatives[mddold$sedatives==9]=NA
mddold$tranquilizers[mddold$tranquilizers==9]=NA
mddold$cannabis[mddold$cannabis==9]=NA
mddold$opioids[mddold$opioids==9]=NA
mddold$amphetamines[mddold$amphetamines==9]=NA
mddold$cocaine[mddold$cocaine==9]=NA
mddold$heroine[mddold$heroine==9]=NA
mddold$hallucinogens[mddold$hallucinogens==9]=NA
mddold$inhalants[mddold$inhalants==9]=NA


mddold$alcohol[mddold$alcohol==99]=NA
mddold$smoke[mddold$smoke==99]=NA
mddold$smokefreq[mddold$smokefreq==9]=NA
mddold$drinkfreq[mddold$drinkfreq==99]=NA

# # # ADD NEW VARIABLES: PACKYEARS and DRINKYEARS # # #

mddold$smokefreqyr[mddold$smokefreq==1]= 364
mddold$smokefreqyr[mddold$smokefreq==2]= 286
mddold$smokefreqyr[mddold$smokefreq==3]= 182
mddold$smokefreqyr[mddold$smokefreq==4]= 78
mddold$smokefreqyr[mddold$smokefreq==5]= 30
mddold$smokefreqyr[mddold$smokefreq==6]= 1
mddold$smokefreqyr[mddold$smokefreq==NA]= NA

mddold$alcoholfreqyr[mddold$drinkfreq==1]=364
mddold$alcoholfreqyr[mddold$drinkfreq==2]=286
mddold$alcoholfreqyr[mddold$drinkfreq==3]=182
mddold$alcoholfreqyr[mddold$drinkfreq==4]=104
mddold$alcoholfreqyr[mddold$drinkfreq==5]=52
mddold$alcoholfreqyr[mddold$drinkfreq==6]=30
mddold$alcoholfreqyr[mddold$drinkfreq==7]=12
mddold$alcoholfreqyr[mddold$drinkfreq==8]=9
mddold$alcoholfreqyr[mddold$drinkfreq==9]=4.5
mddold$alcoholfreqyr[mddold$drinkfreq==10]=1.5
mddold$alcoholfreqyr[mddold$drinkfreq==NA]=NA

mddold$cigsperyear <- (mddold$smokefreqyr * mddold$smoke)
mddold$swigsperyear <- (mddold$alcoholfreqyr * mddold$alcohol)

summary(mddold$smokefreqyr)
summary(mddold$alcoholfreqyr)
summary(mddold$cigsperyear)
summary(mddold$swigsperyear)

table(mddold$smokefreqyr)
table(mddold$alcoholfreqyr)
table(mddold$cigsperyear)
table(mddold$swigsperyear)

mddnew <- mddold
str(mddnew)

# # --------------------------------------------------------------------------------------------------------
# FREQUENCY TABLES
# ("mdd", "sex", "drinkyears", "packyears", "sedatives", "tranquilizers", "cannabis", "opioids", "amphetamines", "cocaine", "heroine", "hallucinogens", "inhalants")

library(gmodels)
CrossTable(mddnew$mdd, mddnew$sex)
CrossTable(mddnew$mdd, mddnew$sedatives)
CrossTable(mddnew$mdd, mddnew$tranquilizers)
CrossTable(mddnew$mdd, mddnew$cannabis)
CrossTable(mddnew$mdd, mddnew$opioids)
CrossTable(mddnew$mdd, mddnew$amphetamines)
CrossTable(mddnew$mdd, mddnew$cocaine)
CrossTable(mddnew$mdd, mddnew$heroine)
CrossTable(mddnew$mdd, mddnew$hallucinogens)
CrossTable(mddnew$mdd, mddnew$inhalants)

library(Hmisc)
mddnew$g4cigs <- cut2(mddnew$cigsperyear, g = 4)
CrossTable(mddnew$mdd, mddnew$g4cigs)
# intervals
# [   1, 2002) | [2002, 4550) | [4550, 7644) | [7644,35672]
  
mddnew$g4swigs <- cut2(mddnew$swigsperyear, g = 4)
CrossTable(mddnew$mdd, mddnew$g4swigs)
# intervals
# [  1.5,   10.5) | [ 10.5,   63.0) | [ 63.0,  360.0) | [360.0,35672.0] 

# # --------------------------------------------------------------------------------------------------------
# # # MULTIVARIATE GRAPHS FOR EXPLORATORY ANALYSIS # # #

library(RColorBrewer)

mypar <- function(a = 1, b = 1, brewer.n = 4, brewer.name = "RdYlGn", ...) {
    par(mar = c(2.5, 2.5, 1.6, 1.1), mgp = c(1.5, 0.5, 0))
    par(mfrow = c(a, b), ...)
    palette(brewer.pal(brewer.n, brewer.name))
}

cols4v1 <- brewer.pal(5, "YlGnBu")
pal4v1 <- colorRampPalette(cols4v1)  # <- dark blue cyan white gradient

cols4v2 <- brewer.pal(5, "YlOrBr")
pal4v2 <- colorRampPalette(cols4v2)  # <- brown orange white gradient

cols4v3 <- brewer.pal(5, "PuRd")
pal4v3 <- colorRampPalette(cols4v3)  # <- purple pink white gradient

cols8 <- brewer.pal(8, "Set3")
pal8 <- colorRampPalette(cols8)

cols12 <- brewer.pal(12, "Set3")
pal12 <- colorRampPalette(cols12)

# create table for mdd vs cigs category
mddvg4cigs = table(mddnew$mdd,mddnew$g4cigs)

# To get the graph we want, we need to exchange the rows in this table
mddvg4cigs = rbind(mddvg4cigs[2,],mddvg4cigs[1,])

# and turn them into percents (dividing by the num. of observations # in each cigs category)
mddvg4cigs[1,]=mddvg4cigs[1,]/table(mddnew$g4cigs)
mddvg4cigs[2,]=mddvg4cigs[2,]/table(mddnew$g4cigs)
str(mddvg4cigs)

# create table for mdd vs alcohol category
mddvg4swigs = table(mddnew$mdd,mddnew$g4swigs)

# To get the graph we want, we need to exchange the rows in this table
mddvg4swigs = rbind(mddvg4swigs[2,],mddvg4swigs[1,])

# and turn them into percents (dividing by the num. of observations # in each swigs category)
mddvg4swigs[1,]=mddvg4swigs[1,]/table(mddnew$g4swigs)
mddvg4swigs[2,]=mddvg4swigs[2,]/table(mddnew$g4swigs)
str(mddvg4swigs)

# create table for mdd vs sex
mddvsex = table(mddnew$mdd,mddnew$sex)

# To get the graph we want, we need to exchange the rows in this table
mddvsex = rbind(mddvsex[2,],mddvsex[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans sex)
mddvsex[1,]=mddvsex[1,]/table(mddnew$sex)
mddvsex[2,]=mddvsex[2,]/table(mddnew$sex)
str(mddvsex)

# create table for mdd vs sedatives
mddvsedatives = table(mddnew$mdd,mddnew$sedatives)

# To get the graph we want, we need to exchange the rows in this table
mddvsedatives = rbind(mddvsedatives[2,],mddvsedatives[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans sedatives)
mddvsedatives[1,]=mddvsedatives[1,]/table(mddnew$sedatives)
mddvsedatives[2,]=mddvsedatives[2,]/table(mddnew$sedatives)
str(mddvsedatives)

# create table for mdd vs cannabis
mddvcannabis = table(mddnew$mdd,mddnew$cannabis)

# To get the graph we want, we need to exchange the rows in this table
mddvcannabis = rbind(mddvcannabis[2,],mddvcannabis[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans cannabis)
mddvcannabis[1,]=mddvcannabis[1,]/table(mddnew$cannabis)
mddvcannabis[2,]=mddvcannabis[2,]/table(mddnew$cannabis)
str(mddvcannabis)

# create table for mdd vs opioids
mddvopioids = table(mddnew$mdd,mddnew$opioids)

# To get the graph we want, we need to exchange the rows in this table
mddvopioids = rbind(mddvopioids[2,],mddvopioids[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans opioids)
mddvopioids[1,]=mddvopioids[1,]/table(mddnew$opioids)
mddvopioids[2,]=mddvopioids[2,]/table(mddnew$opioids)
str(mddvopioids)

# create table for mdd vs tranquilizers
mddvtranquilizers = table(mddnew$mdd,mddnew$tranquilizers)

# To get the graph we want, we need to exchange the rows in this table
mddvtranquilizers = rbind(mddvtranquilizers[2,],mddvtranquilizers[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans tranquilizers)
mddvtranquilizers[1,]=mddvtranquilizers[1,]/table(mddnew$tranquilizers)
mddvtranquilizers[2,]=mddvtranquilizers[2,]/table(mddnew$tranquilizers)
str(mddvtranquilizers)

# create table for mdd vs amphetamines
mddvamphetamines = table(mddnew$mdd,mddnew$amphetamines)

# To get the graph we want, we need to exchange the rows in this table
mddvamphetamines = rbind(mddvamphetamines[2,],mddvamphetamines[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans amphetamines)
mddvamphetamines[1,]=mddvamphetamines[1,]/table(mddnew$amphetamines)
mddvamphetamines[2,]=mddvamphetamines[2,]/table(mddnew$amphetamines)
str(mddvamphetamines)

# create table for mdd vs cocaine
mddvcocaine = table(mddnew$mdd,mddnew$cocaine)

# To get the graph we want, we need to exchange the rows in this table
mddvcocaine = rbind(mddvcocaine[2,],mddvcocaine[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans cocaine)
mddvcocaine[1,]=mddvcocaine[1,]/table(mddnew$cocaine)
mddvcocaine[2,]=mddvcocaine[2,]/table(mddnew$cocaine)
str(mddvcocaine)

# create table for mdd vs heroine
mddvheroine = table(mddnew$mdd,mddnew$heroine)

# To get the graph we want, we need to exchange the rows in this table
mddvheroine = rbind(mddvheroine[2,],mddvheroine[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans heroine)
mddvheroine[1,]=mddvheroine[1,]/table(mddnew$heroine)
mddvheroine[2,]=mddvheroine[2,]/table(mddnew$heroine)
str(mddvheroine)

# create table for mdd vs hallucinogens
mddvhallucinogens = table(mddnew$mdd,mddnew$hallucinogens)

# To get the graph we want, we need to exchange the rows in this table
mddvhallucinogens = rbind(mddvhallucinogens[2,],mddvhallucinogens[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans hallucinogens)
mddvhallucinogens[1,]=mddvhallucinogens[1,]/table(mddnew$hallucinogens)
mddvhallucinogens[2,]=mddvhallucinogens[2,]/table(mddnew$hallucinogens)
str(mddvhallucinogens)

# create table for mdd vs inhalants
mddvinhalants = table(mddnew$mdd,mddnew$inhalants)

# To get the graph we want, we need to exchange the rows in this table
mddvinhalants = rbind(mddvinhalants[2,],mddvinhalants[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans inhalants)
mddvinhalants[1,]=mddvinhalants[1,]/table(mddnew$inhalants)
mddvinhalants[2,]=mddvinhalants[2,]/table(mddnew$inhalants)
str(mddvinhalants)

mypar(mfrow = c(2,2))
# MDD diagnosis {RESPONSE} by Estimated Cigarette Use per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4cigs <- barplot(mddvg4cigs[1,], col=unique(mddnew$g4cigs), xlab="cigarettes per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Cigarette Use per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4cigs <- barplot(mddvg4cigs, col=unique(mddnew$g4cigs), xlab="cigarettes per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Alcohol Consumed per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4swigs <- barplot(mddvg4swigs[1,], col=unique(mddnew$g4swigs), xlab="alcohol per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Alcohol Consumed per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4swigs <- barplot(mddvg4swigs, col=unique(mddnew$g4swigs), xlab="alcohol per year", ylab="diagnosed depression", cex.axis=0.8)
#dev.copy2pdf(file="mdd_cigarettes_alcohol.pdf", height =8, width = 11)

mypar(mfrow = c(2, 5))
# MDD diagnosis {RESPONSE} by Biological Sex {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvsex <- barplot(mddvsex, col=pal4v1(4), xlab="biological sex, 0 - female, 1 - male", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by Sedatives Use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvsedatives <- barplot(mddvsedatives, col=pal4v2(4), xlab="sedative use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by Cannabis Use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvcannabis <- barplot(mddvcannabis, col=pal4v3(4), xlab="cannabis use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by tranquilizers use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvtranquilizers <- barplot(mddvtranquilizers, col=pal8(4), xlab="tranquilizers use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by opioids use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvopioids <- barplot(mddvopioids, col=pal12(4), xlab="opioids use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by cocaine use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvcocaine <- barplot(mddvcocaine, col=pal12(4), xlab="cocaine use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by amphetamines use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvamphetamines <- barplot(mddvamphetamines, col=pal8(4), xlab="amphetamines use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by heroine use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvheroine <- barplot(mddvheroine, col=pal4v3(4), xlab="heroine use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by hallucinogens use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvhallucinogens <- barplot(mddvhallucinogens, col=pal4v2(4), xlab="hallucinogens use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by inhalants use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvinhalants <- barplot(mddvinhalants, col=pal4v1(4), xlab="inhalants use", ylab="diagnosed depression")
#dev.copy2pdf(file="mdd_sex_substances.pdf", height =8, width = 11)

mypar(mfrow=c(1,2))
boxplot(mddnew$cigsperyear, col="#FE9929", xlab = "# of cigarettes smoked per year", cex=1.5)
boxplot(mddnew$swigsperyear, log="y", col="#41B6C4", xlab = "# of alcohol consumed per year", cex=1.5)
#dev.copy2pdf(file="boxplots cigs and swigs.pdf", height =4, width = 7)

# # --------------------------------------------------------------------------------------------------------
# # MODELING # #

# SEPARATE MODELS FOR FEMALES AND MALES
males <- mddnew[[2]] == 1
females <- mddnew[[2]] == 0
mddnewmales <- mddnew[males,]
mddnewfemales <- mddnew[females,]
str(mddnewmales)
str(mddnewfemales)

logsubstancesall <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnew, family="binomial")

logsubstancesmales <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnewmales, family="binomial")

logsubstancesfemales <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnewfemales, family="binomial")

summary(logsubstancesall)
exp(logsubstancesall$coeff)
exp(confint(logsubstancesall))
plot (mddnew$mdd, logsubstancesall$fitted)
anova(logsubstancesall,test="Chisq")


summary(logsubstancesmales)
exp(logsubstancesmales$coeff)
exp(confint(logsubstancesmales))
plot (mddnewmales$mdd, logsubstancesmales$fitted)
anova(logsubstancesmales,test="Chisq")

# Call:
# glm(formula = mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + 
#     sedatives + tranquilizers + cannabis + opioids + amphetamines + 
#     cocaine + heroine + hallucinogens + inhalants, family = "binomial", 
#     data = mddnewmales)
# 
# Deviance Residuals: 
#     Min       1Q   Median       3Q      Max  
# -1.3316  -0.5962  -0.4860  -0.4472   2.1951  
# 
# Coefficients:
#                                     Estimate Std. Error z value Pr(>|z|)    
# (Intercept)                       -2.1097030  0.1136347 -18.566  < 2e-16 ***
# as.factor(g4swigs)[ 10.5,   63.0)  0.1165468  0.1174018   0.993 0.320848    
# as.factor(g4swigs)[ 63.0,  360.0) -0.1015568  0.1145740  -0.886 0.375409    
# as.factor(g4swigs)[360.0,35672.0] -0.1425212  0.1073813  -1.327 0.184428    
# as.factor(g4cigs)[2002, 4550)     -0.0627617  0.1074292  -0.584 0.559076    
# as.factor(g4cigs)[4550, 7644)      0.0330148  0.0902443   0.366 0.714486    
# as.factor(g4cigs)[7644,35672]      0.3729660  0.1058383   3.524 0.000425 ***	<-- this is slightly significant
# sedatives                          0.5647761  0.1393265   4.054 5.04e-05 ***			<-- this is slightly significant
# tranquilizers                      0.0351090  0.1557427   0.225 0.821645    
# cannabis                           0.5819275  0.0845202   6.885 5.78e-12 ***			<-- this is slightly significant
# opioids                            0.3639522  0.1264450   2.878 0.003998 ** 				<-- this is slightly significant
# amphetamines                       0.1981210  0.1285637   1.541 0.123308    
# cocaine                            0.0643056  0.1195646   0.538 0.590693    
# heroine                           -0.0002183  0.2815689  -0.001 0.999382    
# hallucinogens                      0.1674107  0.1238734   1.351 0.176546    
# inhalants                          0.1386452  0.1516635   0.914 0.360631    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1


# (Dispersion parameter for binomial family taken to be 1)
# 
#     Null deviance: 5767.9  on 6544  degrees of freedom
# Residual deviance: 5442.7  on 6529  degrees of freedom
#   (11973 observations deleted due to missingness)
# AIC: 5474.7
# Number of Fisher Scoring iterations: 4
# > exp(logsubstancesmales$coeff)
#                       (Intercept) as.factor(g4swigs)[ 10.5,   63.0) 
#                         0.1212740                         1.1236101 
# as.factor(g4swigs)[ 63.0,  360.0) as.factor(g4swigs)[360.0,35672.0] 
#                         0.9034299                         0.8671692 
#     as.factor(g4cigs)[2002, 4550)     as.factor(g4cigs)[4550, 7644) 
#                         0.9391673                         1.0335659 
#     as.factor(g4cigs)[7644,35672]                         sedatives 
#                         1.4520350                         1.7590538 
#                     tranquilizers                          cannabis 
#                         1.0357326                         1.7894844 
#                           opioids                      amphetamines 
#                         1.4390054                         1.2191099 
#                           cocaine                           heroine 
#                         1.0664182                         0.9997818 
#                     hallucinogens                         inhalants 
#                         1.1822398                         1.1487165 
# > exp(confint(logsubstancesmales))
# Waiting for profiling to be done...
#                                        2.5 %    97.5 %
# (Intercept)                       0.09672887 0.1510365
# as.factor(g4swigs)[ 10.5,   63.0) 0.89350182 1.4160715
# as.factor(g4swigs)[ 63.0,  360.0) 0.72254676 1.1325033
# as.factor(g4swigs)[360.0,35672.0] 0.70381227 1.0724474
# as.factor(g4cigs)[2002, 4550)     0.76016557 1.1585051
# as.factor(g4cigs)[4550, 7644)     0.86652156 1.2344479
# as.factor(g4cigs)[7644,35672]     1.17957468 1.7864351	<-- this is slightly significant
# sedatives                         1.33680824 2.3088374				<-- this is slightly significant
# tranquilizers                     0.76170329 1.4030169
# cannabis                          1.51531707 2.1107442				<-- this is slightly significant
# opioids                           1.12075291 1.8402787				<-- this is slightly significant
# amphetamines                      0.94609989 1.5664145
# cocaine                           0.84226946 1.3461298
# heroine                           0.57008024 1.7265223
# hallucinogens                     0.92610582 1.5053609
# inhalants                         0.85095214 1.5426781

# > plot (mddnewmales$mdd, logsubstancesmales$fitted)
# Error in xy.coords(x, y, xlabel, ylabel, log) : 
#   'x' and 'y' lengths differ
# > anova(logsubstancesmales,test="Chisq")
# Analysis of Deviance Table
# Model: binomial, link: logit
# Response: mdd
# Terms added sequentially (first to last)
#                    Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
# NULL                                6544     5767.9              
# as.factor(g4swigs)  3    4.398      6541     5763.5 0.2215738    
# as.factor(g4cigs)   3   19.022      6538     5744.4 0.0002705 ***	<-- this is significant
# sedatives           1  175.136      6537     5569.3 < 2.2e-16 ***		<-- this is significant
# tranquilizers       1   14.750      6536     5554.6 0.0001227 ***		<-- this is significant
# cannabis            1   89.467      6535     5465.1 < 2.2e-16 ***		<-- this is significant
# opioids             1   12.316      6534     5452.8 0.0004492 ***		<-- this is significant
# amphetamines        1    5.754      6533     5447.0 0.0164489 *  	<-- this is significant
# cocaine             1    1.310      6532     5445.7 0.2523128    
# heroine             1    0.025      6531     5445.7 0.8751546    
# hallucinogens       1    2.193      6530     5443.5 0.1386587    
# inhalants           1    0.829      6529     5442.7 0.3626344    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1
 
summary(logsubstancesfemales)
exp(logsubstancesfemales$coeff)
exp(confint(logsubstancesfemales))
plot (mddnewfemales$mdd, logsubstancesfemales$fitted)
anova(logsubstancesfemales,test="Chisq")

# > summary(logsubstancesfemales)
# 
# Call:
# glm(formula = mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + 
#     sedatives + tranquilizers + cannabis + opioids + amphetamines + 
#     cocaine + heroine + hallucinogens + inhalants, family = "binomial", 
#     data = mddnewfemales)
# 
# Deviance Residuals: 
#     Min       1Q   Median       3Q      Max  
# -1.7306  -0.8047  -0.7157   1.2613   1.7912  
# 
# Coefficients:
#                                   Estimate Std. Error z value Pr(>|z|)    
# (Intercept)                       -1.23135    0.07360 -16.731  < 2e-16 ***
# as.factor(g4swigs)[ 10.5,   63.0) -0.10289    0.07709  -1.335 0.181991    
# as.factor(g4swigs)[ 63.0,  360.0) -0.07070    0.07920  -0.893 0.372032    
# as.factor(g4swigs)[360.0,35672.0] -0.11143    0.08503  -1.310 0.190061    
# as.factor(g4cigs)[2002, 4550)      0.08761    0.07727   1.134 0.256842    
# as.factor(g4cigs)[4550, 7644)      0.26987    0.07261   3.716 0.000202 ***
# as.factor(g4cigs)[7644,35672]      0.51903    0.10521   4.934 8.08e-07 ***
# sedatives                          0.23058    0.13434   1.716 0.086080 .  
# tranquilizers                      0.25377    0.14481   1.752 0.079695 .  
# cannabis                           0.60725    0.06880   8.827  < 2e-16 ***
# opioids                            0.44915    0.12660   3.548 0.000388 ***
# amphetamines                       0.34957    0.12553   2.785 0.005357 ** 
# cocaine                            0.10326    0.11098   0.931 0.352105    
# heroine                            0.30044    0.46536   0.646 0.518537    
# hallucinogens                     -0.03703    0.11994  -0.309 0.757524    
# inhalants                         -0.22342    0.19757  -1.131 0.258134    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1

# (Dispersion parameter for binomial family taken to be 1)
# 
#     Null deviance: 7461.1  on 6040  degrees of freedom
# Residual deviance: 7153.5  on 6025  degrees of freedom
#   (18534 observations deleted due to missingness)
# AIC: 7185.5
# 
# Number of Fisher Scoring iterations: 4

# > exp(logsubstancesfemales$coeff)
#                       (Intercept) as.factor(g4swigs)[ 10.5,   63.0) as.factor(g4swigs)[ 63.0,  360.0) 
#                         0.2918978                         0.9022268                         0.9317417 
# as.factor(g4swigs)[360.0,35672.0]     as.factor(g4cigs)[2002, 4550)     as.factor(g4cigs)[4550, 7644) 
#                         0.8945575                         1.0915670                         1.3097916 
#     as.factor(g4cigs)[7644,35672]                         sedatives                     tranquilizers 
#                         1.6803973                         1.2593351                         1.2888798 
#                          cannabis                           opioids                      amphetamines 
#                         1.8353745                         1.5669720                         1.4184636 
#                           cocaine                           heroine                     hallucinogens 
#                         1.1087842                         1.3504529                         0.9636485 
#                         inhalants 
#                         0.7997824 
# > exp(confint(logsubstancesfemales))
# Waiting for profiling to be done...
#                                       2.5 %    97.5 %
# (Intercept)                       0.2524219 0.3368565
# as.factor(g4swigs)[ 10.5,   63.0) 0.7755918 1.0492891
# as.factor(g4swigs)[ 63.0,  360.0) 0.7976125 1.0880415
# as.factor(g4swigs)[360.0,35672.0] 0.7568787 1.0563681
# as.factor(g4cigs)[2002, 4550)     0.9381185 1.2700609
# as.factor(g4cigs)[4550, 7644)     1.1362570 1.5104773
# as.factor(g4cigs)[7644,35672]     1.3663559 2.0641066
# sedatives                         0.9667310 1.6374606
# tranquilizers                     0.9694174 1.7109332
# cannabis                          1.6035308 2.0999779
# opioids                           1.2219634 2.0078102
# amphetamines                      1.1087079 1.8140419
# cocaine                           0.8913747 1.3774276
# heroine                           0.5462273 3.4608405
# hallucinogens                     0.7609479 1.2179831
# inhalants                         0.5414240 1.1761289

# > anova(logsubstancesfemales,test="Chisq")
# Analysis of Deviance Table
# Model: binomial, link: logit
# Response: mdd
# Terms added sequentially (first to last)
#                    Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
# NULL                                6040     7461.1              
# as.factor(g4swigs)  3    1.950      6037     7459.2  0.582951    
# as.factor(g4cigs)   3   34.849      6034     7424.3 1.311e-07 ***
# sedatives           1   86.558      6033     7337.8 < 2.2e-16 ***
# tranquilizers       1   30.171      6032     7307.6 3.955e-08 ***
# cannabis            1  127.106      6031     7180.5 < 2.2e-16 ***
# opioids             1   15.441      6030     7165.1 8.511e-05 ***
# amphetamines        1    8.984      6029     7156.1  0.002723 ** 
# cocaine             1    0.711      6028     7155.4  0.399268    
# heroine             1    0.288      6027     7155.1  0.591425    
# hallucinogens       1    0.252      6026     7154.8  0.615423    
# inhalants           1    1.286      6025     7153.5  0.256804    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1