R code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
getwd()

# setwd("C:/Users/aseandi/My Library/COURSERA/Passion-Driven Statistics/datasets")

getwd()

# fileurlcsv <- "http://spark-public.s3.amazonaws.com/pdstatistics/data_sets/nesarc_pds.csv"
# download.file(fileurlcsv, destfile="./nesarc_pds.csv")
# list.files(".")
# dateDownloaded <-date()
# dateDownloaded

nesarc <- read.csv("./nesarc_pds.csv")
str(nesarc)
# summary(nesarc)
# sapply(nesarc[1, ], class)
# sum(is.na(nesarc))
# table(is.na(nesarc))

library(Hmisc)
library(RColorBrewer)

library(reshape2)
library(stringr)
library(plyr)

# # --------------------------------------------------------------------------------------------------------
# # # DEFINING THE VARIABLES UNDER STUDY # # #

# study variables: Sex, average daily quantity of alcohol consumed and cigarettes smoked in past 12 months, and use of sedatives, tranquilizers, cannabis, opioids, amphetamines, cocaine, heroine, hallucinogens, and inhalants
# codes: Sex, s2aq8b, s3aq3c1, S3bq1a1, S3bq1a2, S3bq1a3, S3bq1a4, S3bq1a5, S3bq1a6, S3bq1a7, S3bq1a8, S3bq1a9a

#number of alcohol consumed in past 12 months
table(is.na(nesarc$S2AQ8B))
table(nesarc$S2AQ8B)
sum(table(nesarc$S2AQ8B))

#usual quantity of cigarettes smoked
table(is.na(nesarc$S3AQ3C1))
table(nesarc$S3AQ3C1)
sum(table(nesarc$S3AQ3C1))

# # --------------------------------------------------------------------------------------------------------

# without DATA MUNGING, it becomes weird, since binomials are coded differently [as 1 or 2], and NAs were assigned a numeric value [9]
# here we are also only using LINEAR REGRESSION modeling, not accounting for the binomial distribution of some of these variables
lmNoAdjust <- lm(MAJORDEPLIFE ~ SEX+ S2AQ8B+ S3AQ3C1+ S3BQ1A1+ S3BQ1A2+ S3BQ1A3+ S3BQ1A4+ S3BQ1A5+ S3BQ1A6+ S3BQ1A7+ S3BQ1A8+ S3BQ1A9A, data=nesarc)
summary(lmNoAdjust)

# Coefficients:
#              Estimate Std. Error t value Pr(>|t|)    
# (Intercept)  0.0347409  0.0223817   1.552 0.120639    
# SEX          0.1533657  0.0072438  21.172  < 2e-16 ***
# S2AQ8B       0.0001574  0.0003837   0.410 0.681605    
# S3AQ3C1      0.0010271  0.0002495   4.117 3.86e-05 ***
# S3BQ1A1     -0.0788230  0.0155627  -5.065 4.14e-07 ***
# S3BQ1A2     -0.0113460  0.0163401  -0.694 0.487463    
# S3BQ1A3     -0.0418769  0.0148434  -2.821 0.004791 ** 
# S3BQ1A4     -0.0030821  0.0137318  -0.224 0.822409    
# S3BQ1A5     -0.0815162  0.0080903 -10.076  < 2e-16 ***
# S3BQ1A6     -0.0115252  0.0133963  -0.860 0.389627    
# S3BQ1A7     -0.0105396  0.0134567  -0.783 0.433512    
# S3BQ1A8      0.0517945  0.0150253   3.447 0.000568 ***
# S3BQ1A9A     0.1440555  0.0179928   8.006 1.28e-15 ***

# # --------------------------------------------------------------------------------------------------------
# # # CREATE NEW DATAFRAME WITH FEWER VARIABLES # # #
mddold <- data.frame(nesarc$MAJORDEPLIFE, nesarc$SEX, 
nesarc$S3AQ3B1, nesarc$S3AQ3C1, nesarc$S2AQ8A, nesarc$S2AQ8B, 
nesarc$S3BQ1A1, nesarc$S3BQ1A2, nesarc$S3BQ1A3, nesarc$S3BQ1A4, nesarc$S3BQ1A5, nesarc$S3BQ1A6, nesarc$S3BQ1A7, nesarc$S3BQ1A8, nesarc$S3BQ1A9A)
str(mddold)
names(mddold) <- c("mdd", "sex", 
"smokefreq", "smoke", "drinkfreq", "alcohol", 
"sedatives", "tranquilizers", "opioids", "amphetamines", "cannabis", "cocaine", "hallucinogens", "inhalants", "heroine")
str(mddold)

# # --------------------------------------------------------------------------------------------------------
# # # DATA MUNGING # # #
# for the  following variables: "sex", "sedatives", "tranquilizers", "cannabis", "opioids", "amphetamines", "cocaine", "heroine", "hallucinogens", "inhalants"
	# change the binomial setting [1,2] --> [1,0]
	# change [9] to [NA]

# # # DATA MUNGING # # #
# for the  following variables: "alcohol", "smoke", "smokefreq", "drinkfreq"
	# change [99] for smoke quantity, drinks consumed to [NA]
	# change [99] for drinkfreq to [NA]
	# change [9] for smokefreq to [NA]

mddold$sex[mddold$sex==2]=0 # sex=0 female; sex=1 male

mddold$sedatives[mddold$sedatives==2]=0
mddold$tranquilizers[mddold$tranquilizers==2]=0
mddold$cannabis[mddold$cannabis==2]=0
mddold$opioids[mddold$opioids==2]=0
mddold$amphetamines[mddold$amphetamines==2]=0
mddold$cocaine[mddold$cocaine==2]=0
mddold$heroine[mddold$heroine==2]=0
mddold$hallucinogens[mddold$hallucinogens==2]=0
mddold$inhalants[mddold$inhalants==2]=0

mddold$sedatives[mddold$sedatives==9]=NA
mddold$tranquilizers[mddold$tranquilizers==9]=NA
mddold$cannabis[mddold$cannabis==9]=NA
mddold$opioids[mddold$opioids==9]=NA
mddold$amphetamines[mddold$amphetamines==9]=NA
mddold$cocaine[mddold$cocaine==9]=NA
mddold$heroine[mddold$heroine==9]=NA
mddold$hallucinogens[mddold$hallucinogens==9]=NA
mddold$inhalants[mddold$inhalants==9]=NA


mddold$alcohol[mddold$alcohol==99]=NA
mddold$smoke[mddold$smoke==99]=NA
mddold$smokefreq[mddold$smokefreq==9]=NA
mddold$drinkfreq[mddold$drinkfreq==99]=NA

# # # ADD NEW VARIABLES: PACKYEARS and DRINKYEARS # # #

mddold$smokefreqyr[mddold$smokefreq==1]= 364
mddold$smokefreqyr[mddold$smokefreq==2]= 286
mddold$smokefreqyr[mddold$smokefreq==3]= 182
mddold$smokefreqyr[mddold$smokefreq==4]= 78
mddold$smokefreqyr[mddold$smokefreq==5]= 30
mddold$smokefreqyr[mddold$smokefreq==6]= 1
mddold$smokefreqyr[mddold$smokefreq==NA]= NA

mddold$alcoholfreqyr[mddold$drinkfreq==1]=364
mddold$alcoholfreqyr[mddold$drinkfreq==2]=286
mddold$alcoholfreqyr[mddold$drinkfreq==3]=182
mddold$alcoholfreqyr[mddold$drinkfreq==4]=104
mddold$alcoholfreqyr[mddold$drinkfreq==5]=52
mddold$alcoholfreqyr[mddold$drinkfreq==6]=30
mddold$alcoholfreqyr[mddold$drinkfreq==7]=12
mddold$alcoholfreqyr[mddold$drinkfreq==8]=9
mddold$alcoholfreqyr[mddold$drinkfreq==9]=4.5
mddold$alcoholfreqyr[mddold$drinkfreq==10]=1.5
mddold$alcoholfreqyr[mddold$drinkfreq==NA]=NA

mddold$cigsperyear <- (mddold$smokefreqyr * mddold$smoke)
mddold$swigsperyear <- (mddold$alcoholfreqyr * mddold$alcohol)

summary(mddold$smokefreqyr)
summary(mddold$alcoholfreqyr)
summary(mddold$cigsperyear)
summary(mddold$swigsperyear)

table(mddold$smokefreqyr)
table(mddold$alcoholfreqyr)
table(mddold$cigsperyear)
table(mddold$swigsperyear)

mddnew <- mddold
str(mddnew)

# # --------------------------------------------------------------------------------------------------------
# FREQUENCY TABLES
# ("mdd", "sex", "drinkyears", "packyears", "sedatives", "tranquilizers", "cannabis", "opioids", "amphetamines", "cocaine", "heroine", "hallucinogens", "inhalants")

library(gmodels)
CrossTable(mddnew$mdd, mddnew$sex)
CrossTable(mddnew$mdd, mddnew$sedatives)
CrossTable(mddnew$mdd, mddnew$tranquilizers)
CrossTable(mddnew$mdd, mddnew$cannabis)
CrossTable(mddnew$mdd, mddnew$opioids)
CrossTable(mddnew$mdd, mddnew$amphetamines)
CrossTable(mddnew$mdd, mddnew$cocaine)
CrossTable(mddnew$mdd, mddnew$heroine)
CrossTable(mddnew$mdd, mddnew$hallucinogens)
CrossTable(mddnew$mdd, mddnew$inhalants)

library(Hmisc)
mddnew$g4cigs <- cut2(mddnew$cigsperyear, g = 4)
CrossTable(mddnew$mdd, mddnew$g4cigs)
# intervals
# [   1, 2002) | [2002, 4550) | [4550, 7644) | [7644,35672]
  
mddnew$g4swigs <- cut2(mddnew$swigsperyear, g = 4)
CrossTable(mddnew$mdd, mddnew$g4swigs)
# intervals
# [  1.5,   10.5) | [ 10.5,   63.0) | [ 63.0,  360.0) | [360.0,35672.0] 

# # --------------------------------------------------------------------------------------------------------
# # # MULTIVARIATE GRAPHS FOR EXPLORATORY ANALYSIS # # #

library(RColorBrewer)

mypar <- function(a = 1, b = 1, brewer.n = 4, brewer.name = "RdYlGn", ...) {
    par(mar = c(2.5, 2.5, 1.6, 1.1), mgp = c(1.5, 0.5, 0))
    par(mfrow = c(a, b), ...)
    palette(brewer.pal(brewer.n, brewer.name))
}

cols4v1 <- brewer.pal(5, "YlGnBu")
pal4v1 <- colorRampPalette(cols4v1)  # <- dark blue cyan white gradient

cols4v2 <- brewer.pal(5, "YlOrBr")
pal4v2 <- colorRampPalette(cols4v2)  # <- brown orange white gradient

cols4v3 <- brewer.pal(5, "PuRd")
pal4v3 <- colorRampPalette(cols4v3)  # <- purple pink white gradient

cols8 <- brewer.pal(8, "Set3")
pal8 <- colorRampPalette(cols8)

cols12 <- brewer.pal(12, "Set3")
pal12 <- colorRampPalette(cols12)

# create table for mdd vs cigs category
mddvg4cigs = table(mddnew$mdd,mddnew$g4cigs)

# To get the graph we want, we need to exchange the rows in this table
mddvg4cigs = rbind(mddvg4cigs[2,],mddvg4cigs[1,])

# and turn them into percents (dividing by the num. of observations # in each cigs category)
mddvg4cigs[1,]=mddvg4cigs[1,]/table(mddnew$g4cigs)
mddvg4cigs[2,]=mddvg4cigs[2,]/table(mddnew$g4cigs)
str(mddvg4cigs)

# create table for mdd vs alcohol category
mddvg4swigs = table(mddnew$mdd,mddnew$g4swigs)

# To get the graph we want, we need to exchange the rows in this table
mddvg4swigs = rbind(mddvg4swigs[2,],mddvg4swigs[1,])

# and turn them into percents (dividing by the num. of observations # in each swigs category)
mddvg4swigs[1,]=mddvg4swigs[1,]/table(mddnew$g4swigs)
mddvg4swigs[2,]=mddvg4swigs[2,]/table(mddnew$g4swigs)
str(mddvg4swigs)

# create table for mdd vs sex
mddvsex = table(mddnew$mdd,mddnew$sex)

# To get the graph we want, we need to exchange the rows in this table
mddvsex = rbind(mddvsex[2,],mddvsex[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans sex)
mddvsex[1,]=mddvsex[1,]/table(mddnew$sex)
mddvsex[2,]=mddvsex[2,]/table(mddnew$sex)
str(mddvsex)

# create table for mdd vs sedatives
mddvsedatives = table(mddnew$mdd,mddnew$sedatives)

# To get the graph we want, we need to exchange the rows in this table
mddvsedatives = rbind(mddvsedatives[2,],mddvsedatives[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans sedatives)
mddvsedatives[1,]=mddvsedatives[1,]/table(mddnew$sedatives)
mddvsedatives[2,]=mddvsedatives[2,]/table(mddnew$sedatives)
str(mddvsedatives)

# create table for mdd vs cannabis
mddvcannabis = table(mddnew$mdd,mddnew$cannabis)

# To get the graph we want, we need to exchange the rows in this table
mddvcannabis = rbind(mddvcannabis[2,],mddvcannabis[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans cannabis)
mddvcannabis[1,]=mddvcannabis[1,]/table(mddnew$cannabis)
mddvcannabis[2,]=mddvcannabis[2,]/table(mddnew$cannabis)
str(mddvcannabis)

# create table for mdd vs opioids
mddvopioids = table(mddnew$mdd,mddnew$opioids)

# To get the graph we want, we need to exchange the rows in this table
mddvopioids = rbind(mddvopioids[2,],mddvopioids[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans opioids)
mddvopioids[1,]=mddvopioids[1,]/table(mddnew$opioids)
mddvopioids[2,]=mddvopioids[2,]/table(mddnew$opioids)
str(mddvopioids)

# create table for mdd vs tranquilizers
mddvtranquilizers = table(mddnew$mdd,mddnew$tranquilizers)

# To get the graph we want, we need to exchange the rows in this table
mddvtranquilizers = rbind(mddvtranquilizers[2,],mddvtranquilizers[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans tranquilizers)
mddvtranquilizers[1,]=mddvtranquilizers[1,]/table(mddnew$tranquilizers)
mddvtranquilizers[2,]=mddvtranquilizers[2,]/table(mddnew$tranquilizers)
str(mddvtranquilizers)

# create table for mdd vs amphetamines
mddvamphetamines = table(mddnew$mdd,mddnew$amphetamines)

# To get the graph we want, we need to exchange the rows in this table
mddvamphetamines = rbind(mddvamphetamines[2,],mddvamphetamines[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans amphetamines)
mddvamphetamines[1,]=mddvamphetamines[1,]/table(mddnew$amphetamines)
mddvamphetamines[2,]=mddvamphetamines[2,]/table(mddnew$amphetamines)
str(mddvamphetamines)

# create table for mdd vs cocaine
mddvcocaine = table(mddnew$mdd,mddnew$cocaine)

# To get the graph we want, we need to exchange the rows in this table
mddvcocaine = rbind(mddvcocaine[2,],mddvcocaine[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans cocaine)
mddvcocaine[1,]=mddvcocaine[1,]/table(mddnew$cocaine)
mddvcocaine[2,]=mddvcocaine[2,]/table(mddnew$cocaine)
str(mddvcocaine)

# create table for mdd vs heroine
mddvheroine = table(mddnew$mdd,mddnew$heroine)

# To get the graph we want, we need to exchange the rows in this table
mddvheroine = rbind(mddvheroine[2,],mddvheroine[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans heroine)
mddvheroine[1,]=mddvheroine[1,]/table(mddnew$heroine)
mddvheroine[2,]=mddvheroine[2,]/table(mddnew$heroine)
str(mddvheroine)

# create table for mdd vs hallucinogens
mddvhallucinogens = table(mddnew$mdd,mddnew$hallucinogens)

# To get the graph we want, we need to exchange the rows in this table
mddvhallucinogens = rbind(mddvhallucinogens[2,],mddvhallucinogens[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans hallucinogens)
mddvhallucinogens[1,]=mddvhallucinogens[1,]/table(mddnew$hallucinogens)
mddvhallucinogens[2,]=mddvhallucinogens[2,]/table(mddnew$hallucinogens)
str(mddvhallucinogens)

# create table for mdd vs inhalants
mddvinhalants = table(mddnew$mdd,mddnew$inhalants)

# To get the graph we want, we need to exchange the rows in this table
mddvinhalants = rbind(mddvinhalants[2,],mddvinhalants[1,])

# and turn them into percents (dividing by the num. of observations # in either con or sans inhalants)
mddvinhalants[1,]=mddvinhalants[1,]/table(mddnew$inhalants)
mddvinhalants[2,]=mddvinhalants[2,]/table(mddnew$inhalants)
str(mddvinhalants)

mypar(mfrow = c(2,2))
# MDD diagnosis {RESPONSE} by Estimated Cigarette Use per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4cigs <- barplot(mddvg4cigs[1,], col=unique(mddnew$g4cigs), xlab="cigarettes per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Cigarette Use per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4cigs <- barplot(mddvg4cigs, col=unique(mddnew$g4cigs), xlab="cigarettes per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Alcohol Consumed per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4swigs <- barplot(mddvg4swigs[1,], col=unique(mddnew$g4swigs), xlab="alcohol per year", ylab="diagnosed depression", cex.axis=0.8)
# MDD diagnosis {RESPONSE} by Estimated Alcohol Consumed per Year {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvg4swigs <- barplot(mddvg4swigs, col=unique(mddnew$g4swigs), xlab="alcohol per year", ylab="diagnosed depression", cex.axis=0.8)
#dev.copy2pdf(file="mdd_cigarettes_alcohol.pdf", height =8, width = 11)

mypar(mfrow = c(2, 5))
# MDD diagnosis {RESPONSE} by Biological Sex {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvsex <- barplot(mddvsex, col=pal4v1(4), xlab="biological sex, 0 - female, 1 - male", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by Sedatives Use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvsedatives <- barplot(mddvsedatives, col=pal4v2(4), xlab="sedative use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by Cannabis Use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvcannabis <- barplot(mddvcannabis, col=pal4v3(4), xlab="cannabis use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by tranquilizers use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvtranquilizers <- barplot(mddvtranquilizers, col=pal8(4), xlab="tranquilizers use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by opioids use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvopioids <- barplot(mddvopioids, col=pal12(4), xlab="opioids use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by cocaine use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvcocaine <- barplot(mddvcocaine, col=pal12(4), xlab="cocaine use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by amphetamines use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvamphetamines <- barplot(mddvamphetamines, col=pal8(4), xlab="amphetamines use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by heroine use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvheroine <- barplot(mddvheroine, col=pal4v3(4), xlab="heroine use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by hallucinogens use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvhallucinogens <- barplot(mddvhallucinogens, col=pal4v2(4), xlab="hallucinogens use", ylab="diagnosed depression")
# MDD diagnosis {RESPONSE} by inhalants use {EXPLANATORY} among all Adults in the NESARC Study
bp_mddvinhalants <- barplot(mddvinhalants, col=pal4v1(4), xlab="inhalants use", ylab="diagnosed depression")
#dev.copy2pdf(file="mdd_sex_substances.pdf", height =8, width = 11)

mypar(mfrow=c(1,2))
boxplot(mddnew$cigsperyear, col="#FE9929", xlab = "# of cigarettes smoked per year", cex=1.5)
boxplot(mddnew$swigsperyear, log="y", col="#41B6C4", xlab = "# of alcohol consumed per year", cex=1.5)
#dev.copy2pdf(file="boxplots cigs and swigs.pdf", height =4, width = 7)

# # --------------------------------------------------------------------------------------------------------
# # MODELING # #

# SEPARATE MODELS FOR FEMALES AND MALES
males <- mddnew[[2]] == 1
females <- mddnew[[2]] == 0
mddnewmales <- mddnew[males,]
mddnewfemales <- mddnew[females,]
str(mddnewmales)
str(mddnewfemales)

logsubstancesall <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnew, family="binomial")

logsubstancesmales <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnewmales, family="binomial")

logsubstancesfemales <- glm(mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + sedatives + tranquilizers + cannabis + opioids + amphetamines + cocaine + heroine + hallucinogens + inhalants, data=mddnewfemales, family="binomial")

summary(logsubstancesall)
exp(logsubstancesall$coeff)
exp(confint(logsubstancesall))
plot (mddnew$mdd, logsubstancesall$fitted)
anova(logsubstancesall,test="Chisq")


summary(logsubstancesmales)
exp(logsubstancesmales$coeff)
exp(confint(logsubstancesmales))
plot (mddnewmales$mdd, logsubstancesmales$fitted)
anova(logsubstancesmales,test="Chisq")

# Call:
# glm(formula = mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + 
#     sedatives + tranquilizers + cannabis + opioids + amphetamines + 
#     cocaine + heroine + hallucinogens + inhalants, family = "binomial", 
#     data = mddnewmales)
# 
# Deviance Residuals: 
#     Min       1Q   Median       3Q      Max  
# -1.3316  -0.5962  -0.4860  -0.4472   2.1951  
# 
# Coefficients:
#                                     Estimate Std. Error z value Pr(>|z|)    
# (Intercept)                       -2.1097030  0.1136347 -18.566  < 2e-16 ***
# as.factor(g4swigs)[ 10.5,   63.0)  0.1165468  0.1174018   0.993 0.320848    
# as.factor(g4swigs)[ 63.0,  360.0) -0.1015568  0.1145740  -0.886 0.375409    
# as.factor(g4swigs)[360.0,35672.0] -0.1425212  0.1073813  -1.327 0.184428    
# as.factor(g4cigs)[2002, 4550)     -0.0627617  0.1074292  -0.584 0.559076    
# as.factor(g4cigs)[4550, 7644)      0.0330148  0.0902443   0.366 0.714486    
# as.factor(g4cigs)[7644,35672]      0.3729660  0.1058383   3.524 0.000425 ***	<-- this is slightly significant
# sedatives                          0.5647761  0.1393265   4.054 5.04e-05 ***			<-- this is slightly significant
# tranquilizers                      0.0351090  0.1557427   0.225 0.821645    
# cannabis                           0.5819275  0.0845202   6.885 5.78e-12 ***			<-- this is slightly significant
# opioids                            0.3639522  0.1264450   2.878 0.003998 ** 				<-- this is slightly significant
# amphetamines                       0.1981210  0.1285637   1.541 0.123308    
# cocaine                            0.0643056  0.1195646   0.538 0.590693    
# heroine                           -0.0002183  0.2815689  -0.001 0.999382    
# hallucinogens                      0.1674107  0.1238734   1.351 0.176546    
# inhalants                          0.1386452  0.1516635   0.914 0.360631    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1


# (Dispersion parameter for binomial family taken to be 1)
# 
#     Null deviance: 5767.9  on 6544  degrees of freedom
# Residual deviance: 5442.7  on 6529  degrees of freedom
#   (11973 observations deleted due to missingness)
# AIC: 5474.7
# Number of Fisher Scoring iterations: 4
# > exp(logsubstancesmales$coeff)
#                       (Intercept) as.factor(g4swigs)[ 10.5,   63.0) 
#                         0.1212740                         1.1236101 
# as.factor(g4swigs)[ 63.0,  360.0) as.factor(g4swigs)[360.0,35672.0] 
#                         0.9034299                         0.8671692 
#     as.factor(g4cigs)[2002, 4550)     as.factor(g4cigs)[4550, 7644) 
#                         0.9391673                         1.0335659 
#     as.factor(g4cigs)[7644,35672]                         sedatives 
#                         1.4520350                         1.7590538 
#                     tranquilizers                          cannabis 
#                         1.0357326                         1.7894844 
#                           opioids                      amphetamines 
#                         1.4390054                         1.2191099 
#                           cocaine                           heroine 
#                         1.0664182                         0.9997818 
#                     hallucinogens                         inhalants 
#                         1.1822398                         1.1487165 
# > exp(confint(logsubstancesmales))
# Waiting for profiling to be done...
#                                        2.5 %    97.5 %
# (Intercept)                       0.09672887 0.1510365
# as.factor(g4swigs)[ 10.5,   63.0) 0.89350182 1.4160715
# as.factor(g4swigs)[ 63.0,  360.0) 0.72254676 1.1325033
# as.factor(g4swigs)[360.0,35672.0] 0.70381227 1.0724474
# as.factor(g4cigs)[2002, 4550)     0.76016557 1.1585051
# as.factor(g4cigs)[4550, 7644)     0.86652156 1.2344479
# as.factor(g4cigs)[7644,35672]     1.17957468 1.7864351	<-- this is slightly significant
# sedatives                         1.33680824 2.3088374				<-- this is slightly significant
# tranquilizers                     0.76170329 1.4030169
# cannabis                          1.51531707 2.1107442				<-- this is slightly significant
# opioids                           1.12075291 1.8402787				<-- this is slightly significant
# amphetamines                      0.94609989 1.5664145
# cocaine                           0.84226946 1.3461298
# heroine                           0.57008024 1.7265223
# hallucinogens                     0.92610582 1.5053609
# inhalants                         0.85095214 1.5426781

# > plot (mddnewmales$mdd, logsubstancesmales$fitted)
# Error in xy.coords(x, y, xlabel, ylabel, log) : 
#   'x' and 'y' lengths differ
# > anova(logsubstancesmales,test="Chisq")
# Analysis of Deviance Table
# Model: binomial, link: logit
# Response: mdd
# Terms added sequentially (first to last)
#                    Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
# NULL                                6544     5767.9              
# as.factor(g4swigs)  3    4.398      6541     5763.5 0.2215738    
# as.factor(g4cigs)   3   19.022      6538     5744.4 0.0002705 ***	<-- this is significant
# sedatives           1  175.136      6537     5569.3 < 2.2e-16 ***		<-- this is significant
# tranquilizers       1   14.750      6536     5554.6 0.0001227 ***		<-- this is significant
# cannabis            1   89.467      6535     5465.1 < 2.2e-16 ***		<-- this is significant
# opioids             1   12.316      6534     5452.8 0.0004492 ***		<-- this is significant
# amphetamines        1    5.754      6533     5447.0 0.0164489 *  	<-- this is significant
# cocaine             1    1.310      6532     5445.7 0.2523128    
# heroine             1    0.025      6531     5445.7 0.8751546    
# hallucinogens       1    2.193      6530     5443.5 0.1386587    
# inhalants           1    0.829      6529     5442.7 0.3626344    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1
 
summary(logsubstancesfemales)
exp(logsubstancesfemales$coeff)
exp(confint(logsubstancesfemales))
plot (mddnewfemales$mdd, logsubstancesfemales$fitted)
anova(logsubstancesfemales,test="Chisq")

# > summary(logsubstancesfemales)
# 
# Call:
# glm(formula = mdd ~ as.factor(g4swigs) + as.factor(g4cigs) + 
#     sedatives + tranquilizers + cannabis + opioids + amphetamines + 
#     cocaine + heroine + hallucinogens + inhalants, family = "binomial", 
#     data = mddnewfemales)
# 
# Deviance Residuals: 
#     Min       1Q   Median       3Q      Max  
# -1.7306  -0.8047  -0.7157   1.2613   1.7912  
# 
# Coefficients:
#                                   Estimate Std. Error z value Pr(>|z|)    
# (Intercept)                       -1.23135    0.07360 -16.731  < 2e-16 ***
# as.factor(g4swigs)[ 10.5,   63.0) -0.10289    0.07709  -1.335 0.181991    
# as.factor(g4swigs)[ 63.0,  360.0) -0.07070    0.07920  -0.893 0.372032    
# as.factor(g4swigs)[360.0,35672.0] -0.11143    0.08503  -1.310 0.190061    
# as.factor(g4cigs)[2002, 4550)      0.08761    0.07727   1.134 0.256842    
# as.factor(g4cigs)[4550, 7644)      0.26987    0.07261   3.716 0.000202 ***
# as.factor(g4cigs)[7644,35672]      0.51903    0.10521   4.934 8.08e-07 ***
# sedatives                          0.23058    0.13434   1.716 0.086080 .  
# tranquilizers                      0.25377    0.14481   1.752 0.079695 .  
# cannabis                           0.60725    0.06880   8.827  < 2e-16 ***
# opioids                            0.44915    0.12660   3.548 0.000388 ***
# amphetamines                       0.34957    0.12553   2.785 0.005357 ** 
# cocaine                            0.10326    0.11098   0.931 0.352105    
# heroine                            0.30044    0.46536   0.646 0.518537    
# hallucinogens                     -0.03703    0.11994  -0.309 0.757524    
# inhalants                         -0.22342    0.19757  -1.131 0.258134    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1

# (Dispersion parameter for binomial family taken to be 1)
# 
#     Null deviance: 7461.1  on 6040  degrees of freedom
# Residual deviance: 7153.5  on 6025  degrees of freedom
#   (18534 observations deleted due to missingness)
# AIC: 7185.5
# 
# Number of Fisher Scoring iterations: 4

# > exp(logsubstancesfemales$coeff)
#                       (Intercept) as.factor(g4swigs)[ 10.5,   63.0) as.factor(g4swigs)[ 63.0,  360.0) 
#                         0.2918978                         0.9022268                         0.9317417 
# as.factor(g4swigs)[360.0,35672.0]     as.factor(g4cigs)[2002, 4550)     as.factor(g4cigs)[4550, 7644) 
#                         0.8945575                         1.0915670                         1.3097916 
#     as.factor(g4cigs)[7644,35672]                         sedatives                     tranquilizers 
#                         1.6803973                         1.2593351                         1.2888798 
#                          cannabis                           opioids                      amphetamines 
#                         1.8353745                         1.5669720                         1.4184636 
#                           cocaine                           heroine                     hallucinogens 
#                         1.1087842                         1.3504529                         0.9636485 
#                         inhalants 
#                         0.7997824 
# > exp(confint(logsubstancesfemales))
# Waiting for profiling to be done...
#                                       2.5 %    97.5 %
# (Intercept)                       0.2524219 0.3368565
# as.factor(g4swigs)[ 10.5,   63.0) 0.7755918 1.0492891
# as.factor(g4swigs)[ 63.0,  360.0) 0.7976125 1.0880415
# as.factor(g4swigs)[360.0,35672.0] 0.7568787 1.0563681
# as.factor(g4cigs)[2002, 4550)     0.9381185 1.2700609
# as.factor(g4cigs)[4550, 7644)     1.1362570 1.5104773
# as.factor(g4cigs)[7644,35672]     1.3663559 2.0641066
# sedatives                         0.9667310 1.6374606
# tranquilizers                     0.9694174 1.7109332
# cannabis                          1.6035308 2.0999779
# opioids                           1.2219634 2.0078102
# amphetamines                      1.1087079 1.8140419
# cocaine                           0.8913747 1.3774276
# heroine                           0.5462273 3.4608405
# hallucinogens                     0.7609479 1.2179831
# inhalants                         0.5414240 1.1761289

# > anova(logsubstancesfemales,test="Chisq")
# Analysis of Deviance Table
# Model: binomial, link: logit
# Response: mdd
# Terms added sequentially (first to last)
#                    Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
# NULL                                6040     7461.1              
# as.factor(g4swigs)  3    1.950      6037     7459.2  0.582951    
# as.factor(g4cigs)   3   34.849      6034     7424.3 1.311e-07 ***
# sedatives           1   86.558      6033     7337.8 < 2.2e-16 ***
# tranquilizers       1   30.171      6032     7307.6 3.955e-08 ***
# cannabis            1  127.106      6031     7180.5 < 2.2e-16 ***
# opioids             1   15.441      6030     7165.1 8.511e-05 ***
# amphetamines        1    8.984      6029     7156.1  0.002723 ** 
# cocaine             1    0.711      6028     7155.4  0.399268    
# heroine             1    0.288      6027     7155.1  0.591425    
# hallucinogens       1    0.252      6026     7154.8  0.615423    
# inhalants           1    1.286      6025     7153.5  0.256804    
# ---
# Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1   1